A molecular phylogenetic analysis of the Oedipodinae and their intercontinental relationships

Abstract Oedipodine grasshoppers occur throughout the major continents, making them the most widely distributed of the 30 subfamilies that comprise the Acrididae. Most species have been allocated to one of 15 tribes; some remain unassigned. The subfamily, according to Vickery, had an ancient origin, just after the breakup of Pangaea but before the separation of Laurasia from Africa. Thereafter, Oedipodinae continued to evolve in separate continental centers; some Nearctic species apparently descended more recently from Palearctic ancestors when land bridges still connected the two continents. Our objectives are to independently assess these biogeographic accounts, to examine the validity of several tribal constructs, and to shed light on problematic taxa such as Stethophyma and Machaerocera which have had, over the years, an ambivalent affiliation with Oedipodinae. To realize these goals, we sequenced and phylogenetically analyzed portions of four mitochondrial genes (coding for cytochrome oxidase subunits I and II, cytochrome b, and NADH dehydrogenase subunit V), totaling up to 2254 bp, in specimens collected in the Americas, Eurasia, Africa and Australia. Methodology entailed applying weighted and unweighted maximum parsimony, maximum likelihood and Bayesian techniques. A member of the Pyrgomorphidae served as the outgroup. The ages of evolutionary divisions were estimated using the program "r8s"; the date of 100 Mya, previously estimated as the time of divergence between the subfamilies Oedipodinae and Gomphocerinae, was used to calibrate our chronogram. In general, taxa appear to assort themselves according to continental land mass, rather than by tribe. Aiolopini, Bryodemini, Oedipodini and Sphingonotini proved to be nonmonophyletic, whereas there was no evidence to reject monophyly in Acrotylini, Chortophagini, Locustini and Psinidini. Phylogenetically, both Machaerocera and Stethophyma were well-positioned within the Oedipodinae, with Machaerocera closely aligned with Chortophaga and Encoptolophus, and Stethophyma tightly linked to Aiolopus. Duroniella, presently regarded as an oedipodinid, emerged strongly connected to the Gomphocerinae. The current biogeographical distribution of Oedipodinae is the result of widespread intercontinental dispersion. In particular, with the assistance of DIVA analysis, we argue that Asiamerica was the center of initial oedipodinid radiation about 94 Mya. Through a series of early dispersals, the remaining clusters of taxa were established. Somewhat surprisingly, this includes the branch leading to the Australian genera Austroicetes and Chortoicetes. In contrast, the multiple dispersals to the African continent occurred more recently. It would appear that North American oedipodinids had both an ancient and a more recent ancestry. The single South American species analyzed evolved very recently from North American ancestors.

[1]  K. Jønsson,et al.  Determining biogeographical patterns of dispersal and diversification in oscine passerine birds in Australia, Southeast Asia and Africa , 2006 .

[2]  D. Contreras,et al.  Molecular phylogenetic evidence for multiple dispersal events in gomphocerine grasshoppers , 2006 .

[3]  R. Chapman,et al.  Ancient trans-Atlantic flight explains locust biogeography: molecular phylogenetics of Schistocerca , 2006, Proceedings of the Royal Society B: Biological Sciences.

[4]  Yuan Huang,et al.  Phylogenetic relationship of 16 Oedipodidae species (Insecta: Orthoptera) based on the 16S rRNA gene sequences , 2006 .

[5]  C. V. von Dohlen,et al.  A test of morphological hypotheses for tribal and subtribal relationships of Aphidinae (Insecta: Hemiptera: Aphididae) using DNA sequences. , 2006, Molecular phylogenetics and evolution.

[6]  D. Petit,et al.  Géométrie morphologique des ailes des Acrididae (Orthoptera : Caelifera) : sexe, stridulation, caractère , 2006 .

[7]  S. Fuller,et al.  Phylogenetics of the allodapine bee genus Braunsapis: historical biogeography and long‐range dispersal over water , 2005 .

[8]  M. Crisp,et al.  Directional asymmetry of long‐distance dispersal and colonization could mislead reconstructions of biogeography , 2005 .

[9]  I. Kitching,et al.  A molecular phylogeny of the hawkmoth genus Hyles (Lepidoptera: Sphingidae, Macroglossinae). , 2005, Molecular phylogenetics and evolution.

[10]  Michael P. Cummings,et al.  PAUP* [Phylogenetic Analysis Using Parsimony (and Other Methods)] , 2004 .

[11]  C. Rowell,et al.  A dated molecular phylogeny of the Proctolabinae (Orthoptera, Acrididae), especially the Lithoscirtae, and the evolution of their adaptive traits and present biogeography , 2004 .

[12]  Hojun Song Revision of the Alutacea Group of Genus Schistocerca (Orthoptera: Acrididae: Cyrtacanthacridinae) , 2004 .

[13]  Masao Ito,et al.  Phylogeny, historical biogeography, and character evolution in bumble bees (Bombus: Apidae) based on simultaneous analysis of three nuclear gene sequences. , 2004, Molecular phylogenetics and evolution.

[14]  M. Caterino,et al.  Molecular phylogeny, historical biogeography, and divergence time estimates for swallowtail butterflies of the genus Papilio (Lepidoptera: Papilionidae). , 2004, Systematic biology.

[15]  C. Amédégnato,et al.  Out of South America? Additional evidence for a southern origin of melanopline grasshoppers. , 2003, Molecular phylogenetics and evolution.

[16]  M. Schwarz,et al.  Molecular phylogeny and historical biogeography of the large carpenter bees, genus Xylocopa (Hymenoptera: Apidae) , 2002 .

[17]  V. Guryev,et al.  A molecular assessment of the extent of variation and dispersal between Australian populations of the genus Archaeochlus Brundin (Diptera : Chironomidae) , 2002 .

[18]  C. Scholtz,et al.  Historical biogeography of scarabaeine dung beetles , 2002 .

[19]  M. Miles,et al.  An insect molecular clock dates the origin of the insects and accords with palaeontological and biogeographic landmarks. , 2002, Molecular biology and evolution.

[20]  John P. Huelsenbeck,et al.  MRBAYES: Bayesian inference of phylogenetic trees , 2001, Bioinform..

[21]  Fredrik Ronquist,et al.  Patterns of animal dispersal, vicariance and diversification in the Holarctic , 2001 .

[22]  W. Chapco,et al.  Molecular Phylogeny of Selected Eurasian Podismine Grasshoppers (Orthoptera: Acrididae) , 2001 .

[23]  W. Chapco,et al.  A molecular biogeographic analysis of the relationship between North American melanoploid grasshoppers and their Eurasian and South American relatives. , 2001, Molecular phylogenetics and evolution.

[24]  W. Chapco,et al.  A molecular phylogeographic perspective on a fifty-year-old taxonomic issue in grasshopper systematics , 2001, Heredity.

[25]  L. Jolivet,et al.  Mediterranean extension and the Africa‐Eurasia collision , 2000 .

[26]  T. Stidham,et al.  A New Miocene Band-winged Grasshopper (Orthoptera: Acrididae) from Nevada , 2000 .

[27]  J. Rosenberg,et al.  Windborne displacements of Desert Locusts from Africa to the Caribbean and South America , 1999 .

[28]  M. M. Martín,et al.  A New Species of Wernerella Karny (Orthoptera: Acrididae: Oedipodinae) From the Canary Islands, Spain , 1998 .

[29]  V. Confalonieri,et al.  Mitochondrial DNA and phylogeography of the grasshopper Trimerotropis pallidipennis in relation to clinal distribution of chromosome polymorphisms , 1998, Heredity.

[30]  R. Martel,et al.  Molecular Phylogeny of North American Band-Winged Grasshoppers (Orthoptera: Acrididae) , 1997 .

[31]  C. Rowell,et al.  The phylogeny of the Caelifera (Insecta, Orthoptera) as deduced from mtrRNA gene sequences. , 1997, Molecular phylogenetics and evolution.

[32]  Fredrik Ronquist,et al.  Dispersal-Vicariance Analysis: A New Approach to the Quantification of Historical Biogeography , 1997 .

[33]  F. Ayala,et al.  Evolution of theDrosophila obscuraSpecies Group Inferred from theGpdhandSodGenes , 1997 .

[34]  C. Simon,et al.  Simple, Efficient, and Nondestructive DNA Extraction Protocol for Arthropods , 1995 .

[35]  D. Otte,et al.  Review of the Genus Stethophyma Fischer (Orthoptera: Acrididae: Acridinae: Parapleurini) , 1994 .

[36]  D. Labie,et al.  Molecular Evolution , 1991, Nature.

[37]  A. Bellevue,et al.  THE BIOGEOGRAPHY OF CANADIAN GRYLLOPTERA AND ORTHOPTERA , 1989, The Canadian Entomologist.

[38]  D. B. Weissman Notes on the autoecology, cytology, morphology, and crepitation of Trimerotropis grasshoppers (Orthoptera: Oedipodinae) , 1984 .

[39]  J. M. Ritchie A taxonomic revision of the genus Gastrimargus Saussure lOrthopterac Acrididaer , 1982 .

[40]  J. M. Ritchie A taxonomic revision of the genus Oedaleus Fieber (Orthoptera: Acrididae) , 1981 .

[41]  P. Raven,et al.  Plate tectonics and australasian paleobiogeography. , 1972, Science.

[42]  J. Farris A Successive Approximations Approach to Character Weighting , 1969 .

[43]  G. Varley,et al.  Grasshoppers and Locusts , 1967 .

[44]  C. Waddington,et al.  “Animal Cytology and Evolution” , 1955, Nature.

[45]  E. R. Helwig Unusual integrations of the chromatin in machaerocera and other genera of the acrididae (Orthoptera) , 1942 .

[46]  A. Macgillivray ENTOMOLOGICAL SOCIETY OF AMERICA. , 1913, The Canadian Entomologist.

[47]  D. Otte North American Grasshoppers , 1874, The American Naturalist.

[48]  D. K. Weaver,et al.  Grasshoppers and locusts , 2007 .

[49]  C. Rowell A new Ugandan species of Pterotiltus (Orthoptera, Acrididae, Oxyinae) with epiphyllic oviposition , 2005 .

[50]  F. Ronquist Historical Biogeography , 2005 .

[51]  G. A. Melo,et al.  Molecular phylogeny of the stingless bees (Apidae, Apinae, Meliponini) inferred from mitochondrial 16S rDNA sequences , 2003 .

[52]  D. Maddison,et al.  MacClade 4: analysis of phy-logeny and character evolution , 2003 .

[53]  Peter Arensburger,et al.  Combined data, Bayesian phylogenetics, and the origin of the New Zealand cicada genera. , 2002, Systematic biology.

[54]  M. Sanderson Estimating absolute rates of molecular evolution and divergence times: a penalized likelihood approach. , 2002, Molecular biology and evolution.

[55]  D. Swofford PAUP*: Phylogenetic analysis using parsimony (*and other methods), Version 4.0b10 , 2002 .

[56]  A. R. Wagner Molecular Biology and Evolution , 2001 .

[57]  James M. Pflug,et al.  Molecular Phylogenetics and Evolution , 2001 .

[58]  M. Tristem Molecular Evolution — A Phylogenetic Approach. , 2000, Heredity.

[59]  David Posada,et al.  MODELTEST: testing the model of DNA substitution , 1998, Bioinform..

[60]  F. Ayala,et al.  Evolution of the Drosophila obscura species group inferred from the Gpdh and Sod genes. , 1997, Molecular phylogenetics and evolution.

[61]  D. Rentz Grasshopper Country: The Abundant Orthopteroid Insects of Australia , 1996 .

[62]  B. Funnell,et al.  Atlas of Mesozoic and Cenozoic Coastlines , 1994 .

[63]  A. Hallam An Outline Of Phanerozoic Biogeography , 1994 .

[64]  D. Otte Orthoptera species file , 1994 .

[65]  I. Askevold CLASSIFICATION, RECONSTRUCTED PHYLOGENY, AND GEOGRAPHIC HISTORY OF THE NEW WORLD MEMBERS OF PLATEUMARIS THOMSON, 1859 (COLEOPTERA: CHRYSOMELIDAE: DONACIINAE) , 1991 .

[66]  C. Guarneri Cornell University Press , 1991 .

[67]  A. Sidow,et al.  Molecular phylogeny. , 1991, Current opinion in genetics & development.

[68]  John C. Briggs,et al.  Biogeography and plate tectonics , 1987 .

[69]  B. Baccetti Evolutionary biology of orthopteroid insects. , 1987 .

[70]  V. Vickery,et al.  The grasshoppers, crickets, and related insects of Canada and adjacent regions. Ulonata: Dermaptera, Cheleutoptera, Notoptera, Dictuoptera, Grylloptera, and Orthoptera. , 1985 .

[71]  B. Tiffney The Eocene North Atlantic land bridge: its importance in Tertiary and modern phytogeography of the northern hemisphere , 1985 .

[72]  D. Rentz,et al.  Cytological, morphological, and crepitational characteristics of the trimerotropine (Aerochoreutes, Circotettix, and Trimerotropis) grasshoppers (Orthoptera; Oedipodinae). , 1980 .

[73]  V. M. Dirsh The African genera of Acridoidea , 1965 .

[74]  G. I. Bei-Bienko,et al.  Locusts and grasshoppers of the U.S.S.R. and adjacent countries. , 1963 .

[75]  K. Key The Ecology and Biogeography of Australian Grasshoppers and Locusts , 1959 .

[76]  C. Scientific,et al.  The taxonomy, phases, and distribution of the genera Chortoicetes Brunn. and Austroicetes Uv. (Orthoptera: Acrididae) , 1954 .