Bends and splitters in graphene nanoribbon waveguides.

We investigate the performance of bends and splitters in graphene nanoribbon waveguides. Although the graphene waveguides are lossy themselves, we show that bends and splitters do not induce any additional loss provided that the nanoribbon width is sub-wavelength. We use transmission line theory to qualitatively interpret the behavior observed in our simulation. Our results pave a promising way to realize ultra-compact devices operating in the terahertz region.

[1]  J. Zi,et al.  Band structure of plasmons and optical absorption enhancement in graphene on subwavelength dielectric gratings at infrared frequencies , 2012 .

[2]  Anders Kristensen,et al.  Nearly zero transmission through periodically modulated ultrathin metal films , 2010, 1006.3041.

[3]  F. Xia,et al.  Tunable infrared plasmonic devices using graphene/insulator stacks. , 2012, Nature nanotechnology.

[4]  H. Bechtel,et al.  Graphene plasmonics for tunable terahertz metamaterials. , 2011, Nature nanotechnology.

[5]  A. Geim,et al.  Two-dimensional gas of massless Dirac fermions in graphene , 2005, Nature.

[6]  Yang Wu,et al.  Measurement of the optical conductivity of graphene. , 2008, Physical review letters.

[7]  Nader Engheta,et al.  Transformation Optics Using Graphene , 2011, Science.

[8]  Toshihiro Okamoto,et al.  Characteristics of gap plasmon waveguide with stub structures. , 2008, Optics express.

[9]  J. Joannopoulos,et al.  High Transmission through Sharp Bends in Photonic Crystal Waveguides. , 1996, Physical review letters.

[10]  Harry A. Atwater,et al.  Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides , 2003, Nature materials.

[11]  Feng Wang,et al.  Gate-Variable Optical Transitions in Graphene , 2008, Science.

[12]  Sukosin Thongrattanasiri,et al.  Complete optical absorption in periodically patterned graphene. , 2012, Physical review letters.

[13]  T. Ebbesen,et al.  Channel plasmon subwavelength waveguide components including interferometers and ring resonators , 2006, Nature.

[14]  S. Thongrattanasiri,et al.  Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons. , 2012, ACS nano.

[15]  K. Loh,et al.  Graphene photonics, plasmonics, and broadband optoelectronic devices. , 2012, ACS nano.

[16]  Philippe Godignon,et al.  Optical nano-imaging of gate-tunable graphene plasmons , 2012, Nature.

[17]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[18]  A. H. Castro Neto,et al.  Gate-tuning of graphene plasmons revealed by infrared nano-imaging , 2012, Nature.

[19]  M. Soljavci'c,et al.  Plasmonics in graphene at infrared frequencies , 2009, 0910.2549.

[20]  A. N. Grigorenko,et al.  Graphene plasmonics , 2012, Nature Photonics.

[21]  Shanhui Fan,et al.  Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides , 2005 .

[22]  D. Pile,et al.  Channel plasmon-polariton in a triangular groove on a metal surface. , 2004, Optics letters.

[23]  Xiang Zhang,et al.  A graphene-based broadband optical modulator , 2011, Nature.

[24]  Min Qiu,et al.  Study of transmission properties for waveguide bends by use of a circular photonic crystal , 2005 .

[25]  Qianfan Xu,et al.  Excitation of plasmonic waves in graphene by guided-mode resonances. , 2012, ACS nano.

[26]  S. Sarma,et al.  Dielectric function, screening, and plasmons in two-dimensional graphene , 2006, cond-mat/0610561.

[27]  L. Falkovsky,et al.  Space-time dispersion of graphene conductivity , 2006, cond-mat/0606800.

[28]  F. J. Garcia-Vidal,et al.  Edge and waveguide terahertz surface plasmon modes in graphene microribbons , 2011, 1107.5787.

[29]  P. Kim,et al.  Dirac charge dynamics in graphene by infrared spectroscopy , 2008, 0807.3780.