Combinatorial Constructions of Multi-erasure-Correcting Codes with Independent Parity Symbols for Storage Systems

In this paper, we present a new class of t-erasure horizontal codes with independent parity symbols based on Column-Hamiltonian Latin squares (CHLS). We call the codes PIHLatin (parity independent horizontal Latin) codes. We prove the necessary and sufficient condition of the existence of PIHLatin codes for t=2. For tges3, we prove some necessary conditions of the existence of PIHLatin codes. We also prove the bijection between 2-erasure PIHLatin-like codes and CHLSs and prove the mapping from t-erasure PIHLatin-like codes to t-1 mutually orthogonal CHLSs for t>2. The performance analysis shows that PIHLatin codes are superior to other multi-erasure array codes in flexibility and variety. Moreover, PIHLatin codes are suitable for both traditional disk arrays and distributed storage systems.

[1]  James Lee Hafner,et al.  WEAVER codes: highly fault tolerant erasure codes for storage systems , 2005, FAST'05.

[2]  Jehoshua Bruck,et al.  X-Code: MDS Array Codes with Optimal Encoding , 1999, IEEE Trans. Inf. Theory.

[3]  James S. Plank,et al.  A practical analysis of low-density parity-check erasure codes for wide-area storage applications , 2004, International Conference on Dependable Systems and Networks, 2004.

[4]  Jehoshua Bruck,et al.  EVENODD: An Efficient Scheme for Tolerating Double Disk Failures in RAID Architectures , 1995, IEEE Trans. Computers.

[5]  J. Plank Optimizing Cauchy Reed-Solomon Codes for Fault-Tolerant Storage Applications , 2005 .

[6]  C. Colbourn,et al.  Handbook of Combinatorial Designs , 2006 .

[7]  Randy H. Katz,et al.  Coding techniques for handling failures in large disk arrays , 2005, Algorithmica.

[8]  Ian M. Wanless Atomic Latin Squares based on Cyclotomic Orthomorphisms , 2005, Electron. J. Comb..

[9]  Cheng Huang,et al.  STAR : An Efficient Coding Scheme for Correcting Triple Storage Node Failures , 2005, IEEE Transactions on Computers.

[10]  Peter F. Corbett,et al.  Row-Diagonal Parity for Double Disk Failure Correction (Awarded Best Paper!) , 2004, USENIX Conference on File and Storage Technologies.

[11]  Zhou Jie The Study of Graph Decompositions and Placement of Parity and Data to Tolerate Two Failures in Disk Arrays: Conditions and Existance , 2003 .

[12]  Lihao Xu,et al.  Optimizing Cauchy Reed-Solomon Codes for Fault-Tolerant Network Storage Applications , 2006, Fifth IEEE International Symposium on Network Computing and Applications (NCA'06).

[13]  Ian M. Wanless Perfect Factorisations of Bipartite Graphs and Latin Squares Without Proper Subrectangles , 1999, Electron. J. Comb..

[14]  James S. Plank A tutorial on Reed-Solomon coding for fault-tolerance in RAID-like systems , 1997 .

[15]  Liu Jing Construct Double-Erasure-Correcting Data Layout Using P1F , 2006 .

[16]  Daniel A. Spielman,et al.  Practical loss-resilient codes , 1997, STOC '97.