New result on the model-based biological control of the chemostat

Abstract We investigate a known competition model of the chemostat with general (nonmonotone) response functions and distinct removal rates. Based on the competitive exclusion principle, Rapaport and Harmand (2008) [13] established the concept of the so called biological control. The proof of the latter result is based on a theorem of Li (1998) [11]. Here we first propose a modification of Li’s theorem and then present an extension of the biological control concept.

[1]  Gail S. K. Wolkowicz,et al.  Competition in the Chemostat: A Distributed Delay Model and Its Global Asymptotic Behavior , 1997, SIAM J. Appl. Math..

[2]  Neli Dimitrova,et al.  Nonlinear adaptive control of a model of an uncertain fermentation process , 2010 .

[3]  Gail S. K. Wolkowicz,et al.  A MATHEMATICAL MODEL OF THE CHEMOSTAT WITH A GENERAL CLASS OF FUNCTIONS DESCRIBING NUTRIENT UPTAKE , 1985 .

[4]  Gail S. K. Wolkowicz,et al.  Global Asymptotic Behavior of a Chemostat Model with Discrete Delays , 1997, SIAM J. Appl. Math..

[5]  Denis Dochain,et al.  Microbial ecology and bioprocess control: Opportunities and challenges , 2008 .

[6]  Olivier Bernard,et al.  Nonlinear adaptive control for bioreactors with unknown kinetics , 2004, Autom..

[7]  Jérôme Harmand,et al.  Biological control of the chemostat with nonmonotonic response and different removal rates. , 2008, Mathematical biosciences and engineering : MBE.

[8]  K. Gopalsamy Stability and Oscillations in Delay Differential Equations of Population Dynamics , 1992 .

[9]  Sze-Bi Hsu,et al.  A SURVEY OF CONSTRUCTING LYAPUNOV FUNCTIONS FOR MATHEMATICAL MODELS IN POPULATION BIOLOGY , 2005 .

[10]  Hal L. Smith,et al.  Feedback control for chemostat models , 2003, Journal of mathematical biology.

[11]  G. Hardin The competitive exclusion principle. , 1960, Science.

[12]  Gail S. K. Wolkowicz,et al.  Global dynamics of a mathematical model of competition in the chemostat: general response functions and differential death rates , 1992 .

[13]  Bingtuan Li,et al.  Global Asymptotic Behavior of the Chemostat: General Response Functions and Different Removal Rates , 1998, SIAM J. Appl. Math..

[14]  Paul Waltman,et al.  The Theory of the Chemostat: Dynamics of Microbial Competition , 1995 .

[15]  C. Ebenbauer,et al.  Locating omega-limit sets using height functions , 2010 .

[16]  Mohamed I. El-Hawwary,et al.  Reduction Principles and the Stabilization of Closed Sets for Passive Systems , 2009, IEEE Transactions on Automatic Control.

[17]  G. F. Gause The struggle for existence , 1971 .