Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells

[1]  Martin J. Aryee,et al.  Epigenetic memory in induced pluripotent stem cells , 2010, Nature.

[2]  Cole Trapnell,et al.  Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. , 2010, Nature biotechnology.

[3]  J. Alexander,et al.  Induction of neuro-protective/regenerative genes in stem cells infiltrating post-ischemic brain tissue , 2010, Experimental & Translational Stroke Medicine.

[4]  Shinya Yamanaka,et al.  Broader implications of defining standards for the pluripotency of iPSCs. , 2009, Cell stem cell.

[5]  H. Cedar,et al.  Linking DNA methylation and histone modification: patterns and paradigms , 2009, Nature Reviews Genetics.

[6]  George Q. Daley,et al.  Reprogramming of human somatic cells to pluripotency with defined factors , 2008, Nature.

[7]  Shulan Tian,et al.  Induced Pluripotent Stem Cell Lines Derived from Human Somatic Cells , 2007, Science.

[8]  R. Lister,et al.  Highly Integrated Single-Base Resolution Maps of the Epigenome in Arabidopsis , 2008, Cell.

[9]  Lee E. Edsall,et al.  Distinct epigenomic landscapes of pluripotent and lineage-committed human cells. , 2010, Cell stem cell.

[10]  R. Stewart,et al.  Human Induced Pluripotent Stem Cells Free of Vector and Transgene Sequences , 2009, Science.

[11]  Rudolf Jaenisch,et al.  Parkinson's Disease Patient-Derived Induced Pluripotent Stem Cells Free of Viral Reprogramming Factors , 2009, Cell.

[12]  Chia-Lin Wei,et al.  Dynamic changes in the human methylome during differentiation. , 2010, Genome research.

[13]  Kristopher L. Nazor,et al.  Adult mice generated from induced pluripotent stem cells , 2009, Nature.

[14]  S. Cichon,et al.  TMEM132D, a new candidate for anxiety phenotypes: evidence from human and mouse studies , 2011, Molecular Psychiatry.

[15]  T. Ichisaka,et al.  Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors , 2007, Cell.

[16]  Philip R Williams,et al.  Molecular mapping of developing dorsal horn-enriched genes by microarray and dorsal/ventral subtractive screening. , 2006, Developmental biology.

[17]  J. I. Izpisúa Belmonte,et al.  Human and mouse adipose-derived cells support feeder-independent induction of pluripotent stem cells , 2010, Proceedings of the National Academy of Sciences.

[18]  M. Pellegrini,et al.  Relationship between nucleosome positioning and DNA methylation , 2010, Nature.

[19]  Lior Pachter,et al.  Sequence Analysis , 2020, Definitions.

[20]  Richard A Young,et al.  Chromatin structure and gene expression programs of human embryonic and induced pluripotent stem cells. , 2010, Cell stem cell.

[21]  Hideyuki Okano,et al.  Variation in the safety of induced pluripotent stem cell lines , 2009, Nature Biotechnology.

[22]  Shinya Yamanaka,et al.  A Fresh Look at iPS Cells , 2009, Cell.

[23]  J. Thomson,et al.  BMP4 initiates human embryonic stem cell differentiation to trophoblast , 2002, Nature Biotechnology.

[24]  Tomohiro Kono,et al.  Aberrant silencing of imprinted genes on chromosome 12qF1 in mouse induced pluripotent stem cells , 2010, Nature.

[25]  R. O’Malley,et al.  An adapter ligation-mediated PCR method for high-throughput mapping of T-DNA inserts in the Arabidopsis genome , 2007, Nature Protocols.

[26]  Mitchell D. Probasco,et al.  Feeder-independent culture of human embryonic stem cells , 2006, Nature Methods.

[27]  S. Cole,et al.  Sequences Human Induced Pluripotent Stem Cells Free of Vector and Transgene , 2012 .

[28]  Mike J. Mason,et al.  Induced pluripotent stem cells and embryonic stem cells are distinguished by gene expression signatures. , 2009, Cell stem cell.

[29]  Qi Zhou,et al.  iPS cells produce viable mice through tetraploid complementation , 2009, Nature.

[30]  K. Hochedlinger,et al.  Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells , 2010, Nature Biotechnology.

[31]  Martin J Aryee,et al.  Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts , 2009, Nature Genetics.

[32]  Pao-Yang Chen,et al.  BS Seeker: precise mapping for bisulfite sequencing , 2010, BMC Bioinformatics.

[33]  G. Daley,et al.  Targeted bisulfite sequencing reveals changes in DNA methylation associated with nuclear reprogramming , 2009, Nature Biotechnology.

[34]  S. Yamanaka,et al.  Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors , 2006, Cell.

[35]  J. Thomson,et al.  Derivation of human embryonic stem cells in defined conditions , 2006, Nature Biotechnology.

[36]  Cole Trapnell,et al.  Ultrafast and memory-efficient alignment of short DNA sequences to the human genome , 2009, Genome Biology.

[37]  James A Thomson,et al.  Neural differentiation of human induced pluripotent stem cells follows developmental principles but with variable potency , 2010, Proceedings of the National Academy of Sciences.

[38]  Lee E. Edsall,et al.  Human DNA methylomes at base resolution show widespread epigenomic differences , 2009, Nature.