Heat transfer analysis of composite slabs using meshless element Free Galerkin method

This paper deals with three dimensional heat transfer analysis of composite slabs using meshless element free Galerkin method. The element free Galerkin method (EFG) method utilizes moving least square (MLS) approximants to approximate the unknown function of temperature Tx). These approximants are constructed by using a weight function, a basis function and a set of coefficients that depends on position. Penalty and Lagrange multiplier techniques have been used to enforce the essential boundary conditions. MATLAB codes have been developed to obtain the EFG results. Two new basis functions namely trigonometric and polynomial have been proposed. A comparison has been made among the results obtained using existing (linear) and proposed (trigonometric and polynomial) basis functions for three dimensional heat transfer in composite slabs. The effect of penalty parameter on EFG results has also been discussed. The results obtained by EFG method are compared with those obtained by finite element method

[1]  Ted Belytschko,et al.  Multiple scale meshfree methods for damage fracture and localization , 1999 .

[2]  I. Babuska,et al.  The Partition of Unity Method , 1997 .

[3]  Ted Belytschko,et al.  ON THE COMPLETENESS OF MESHFREE PARTICLE METHODS , 1998 .

[4]  Ravi Prakash,et al.  The Element Free Galerkin Method in Three Dimensional Steady State Heat Conduction , 2002, Int. J. Comput. Eng. Sci..

[5]  Sunil Saigal,et al.  AN IMPROVED ELEMENT FREE GALERKIN FORMULATION , 1997 .

[6]  J. Coulomb,et al.  Use of the Diffuse Element Method for Electromagnetic Feud computation , 1992, Digest of the Fifth Biennial IEEE Conference on Electromagnetic Field Computation.

[7]  T. Belytschko,et al.  Crack propagation by element-free Galerkin methods , 1995 .

[8]  Li,et al.  Moving least-square reproducing kernel methods (I) Methodology and convergence , 1997 .

[9]  Ted Belytschko,et al.  Explicit Reproducing Kernel Particle Methods for large deformation problems , 1998 .

[10]  Ted Belytschko,et al.  A Petrov-Galerkin Diffuse Element Method (PG DEM) and its comparison to EFG , 1997 .

[11]  S. Atluri,et al.  A new Meshless Local Petrov-Galerkin (MLPG) approach in computational mechanics , 1998 .

[12]  I. Singh Application of meshless EFG method in fluid flow problems , 2004 .

[13]  Ted Belytschko,et al.  Advances in multiple scale kernel particle methods , 1996 .

[14]  Wing Kam Liu,et al.  Reproducing kernel particle methods , 1995 .

[15]  Ted Belytschko,et al.  Element-free Galerkin methods for dynamic fracture in concrete , 2000 .

[16]  P. Villon,et al.  Using the Diffuse Approximation for Optimizing the Location of Anti-Sound Sources , 1994 .

[17]  I. Singh,et al.  HEAT TRANSFER ANALYSIS OF TWO-DIMENSIONAL FINS USING MESHLESS ELEMENT FREE GALERKIN METHOD , 2003 .

[18]  B. Nayroles,et al.  Generalizing the finite element method: Diffuse approximation and diffuse elements , 1992 .

[19]  Wing Kam Liu,et al.  Reproducing kernel particle methods for structural dynamics , 1995 .

[20]  S. Rahman,et al.  An efficient meshless method for fracture analysis of cracks , 2000 .

[21]  J. Monaghan Smoothed particle hydrodynamics , 2005 .

[22]  Joseph J Monaghan,et al.  An introduction to SPH , 1987 .

[23]  Satya N. Atluri,et al.  A modified collocation method and a penalty formulation for enforcing the essential boundary conditions in the element free Galerkin method , 1998 .

[24]  Guangyao Li,et al.  Element‐free Galerkin method for contact problems in metal forming analysis , 2001 .

[25]  Ted Belytschko,et al.  Overview and applications of the reproducing Kernel Particle methods , 1996 .

[26]  T. Belytschko,et al.  A new implementation of the element free Galerkin method , 1994 .

[27]  T. Belytschko,et al.  Fracture and crack growth by element free Galerkin methods , 1994 .

[28]  Ted Belytschko,et al.  An element-free Galerkin method for three-dimensional fracture mechanics , 1997 .

[29]  B. Moran,et al.  Natural neighbour Galerkin methods , 2001 .

[30]  T. Belytschko,et al.  Element-free galerkin methods for static and dynamic fracture , 1995 .

[31]  I. Singh,et al.  Application of meshless element free Galerkin method in two-dimensional heat conduction problems , 2004 .

[32]  Lalita Udpa,et al.  Meshless element-free Galerkin method in NDT applications , 2002 .

[33]  P. Lancaster,et al.  Surfaces generated by moving least squares methods , 1981 .

[34]  T. Belytschko,et al.  Analysis of thin shells by the Element-Free Galerkin method , 1996 .

[35]  Ted Belytschko,et al.  Enforcement of essential boundary conditions in meshless approximations using finite elements , 1996 .

[36]  Mark A Fleming,et al.  Meshless methods: An overview and recent developments , 1996 .

[37]  G. Yagawa,et al.  Free mesh method: A new meshless finite element method , 1996 .

[38]  Ted Belytschko,et al.  A unified stability analysis of meshless particle methods , 2000 .

[39]  Ted Belytschko,et al.  Element-free Galerkin method for wave propagation and dynamic fracture , 1995 .

[40]  T. Belytschko,et al.  Element‐free Galerkin methods , 1994 .

[41]  Ted Belytschko,et al.  An introduction to programming the meshless Element F reeGalerkin method , 1998 .

[42]  S. Atluri,et al.  A meshless local boundary integral equation (LBIE) method for solving nonlinear problems , 1998 .

[43]  Vlatko Cingoski,et al.  Element-free Galerkin method for electromagnetic field computations , 1998 .

[44]  Ted Belytschko,et al.  THE ELEMENT FREE GALERKIN METHOD FOR DYNAMIC PROPAGATION OF ARBITRARY 3-D CRACKS , 1999 .

[45]  T. Belytschko,et al.  DYNAMIC FRACTURE USING ELEMENT-FREE GALERKIN METHODS , 1996 .

[46]  K. Bathe,et al.  The method of finite spheres , 2000 .

[47]  Ted Belytschko,et al.  Analysis of thin plates by the element-free Galerkin method , 1995 .

[48]  T. Belytschko,et al.  THE NATURAL ELEMENT METHOD IN SOLID MECHANICS , 1998 .