Computation of outer inverses of tensors using the QR decomposition
暂无分享,去创建一个
Jajati Keshari Sahoo | Vasilios N. Katsikis | Predrag S. Stanimirović | Ratikanta Behera | V. Katsikis | P. Stanimirović | Ratikanta Behera | J. Sahoo
[1] Na Li,et al. Solving Multilinear Systems via Tensor Inversion , 2013, SIAM J. Matrix Anal. Appl..
[2] Changjiang Bu,et al. Moore–Penrose inverse of tensors via Einstein product , 2016 .
[3] Yimin Wei,et al. A characterization and representation of the generalized inverse A(2)T,S and its applications , 1998 .
[4] V. Katsikis,et al. Perturbation theory for Moore–Penrose inverse of tensor via Einstein product , 2019, Comput. Appl. Math..
[5] Haifeng Ma,et al. Optimal perturbation bounds for the core inverse , 2018, Appl. Math. Comput..
[6] Yong-Lin Chen,et al. Representation and approximation of the outer inverse AT,S(2) of a matrix A , 2000 .
[7] Changfeng Ma,et al. Global least squares methods based on tensor form to solve a class of generalized Sylvester tensor equations , 2020, Appl. Math. Comput..
[8] Yimin Wei,et al. Numerical and Symbolic Computations of Generalized Inverses , 2018 .
[9] V. Katsikis,et al. Core and core-EP inverses of tensors , 2019, Computational and Applied Mathematics.
[10] Bingxue Wang,et al. Perturbation bounds for DMP and CMP inverses of tensors via Einstein product , 2019, Comput. Appl. Math..
[11] Yimin Wei,et al. Weighted Moore-Penrose inverses and fundamental theorem of even-order tensors with Einstein product , 2017 .
[12] Ashish Kumar Nandi,et al. Further results on the Drazin inverse of even‐order tensors , 2019, Numer. Linear Algebra Appl..
[13] Yimin Wei,et al. The Drazin inverse of an even-order tensor and its application to singular tensor equations , 2018, Comput. Math. Appl..
[14] Changjiang Bu,et al. Generalized inverses of tensors via a general product of tensors , 2018 .
[15] Xuezhong Wang,et al. Tensor neural network models for tensor singular value decompositions , 2020, Computational Optimization and Applications.
[16] B. Zheng,et al. Tensor inversion and its application to the tensor equations with Einstein product , 2018, Linear and Multilinear Algebra.
[17] M. Drazin. A class of outer generalized inverses , 2012 .
[18] B. R. Hunt,et al. Digital Image Restoration , 1977 .
[19] A. Einstein. The Foundation of the General Theory of Relativity , 1916 .
[20] Julio Benítez,et al. The generalized inverses of tensors and an application to linear models , 2017, Comput. Math. Appl..
[21] Aggelos K. Katsaggelos,et al. Iterative identification and restoration of images , 1990, ICASSP-88., International Conference on Acoustics, Speech, and Signal Processing.
[22] M. Kilmer,et al. Factorization strategies for third-order tensors , 2011 .
[23] David Rubin,et al. Introduction to Continuum Mechanics , 2009 .
[24] Yimin Wei,et al. Mixed and componentwise condition numbers for matrix decompositions , 2017, Theor. Comput. Sci..
[25] Bing Zheng,et al. Generalized inverse A(2)T, S and a rank equation , 2004, Appl. Math. Comput..
[26] Ratikanta Behera,et al. Generalized Inverses of Boolean Tensors via Einstein Product , 2019, 1903.04155.
[27] Yimin Wei,et al. Generalized tensor function via the tensor singular value decomposition based on the T-product , 2019, Linear Algebra and its Applications.
[28] Debasisha Mishra,et al. Further results on generalized inverses of tensors via the Einstein product , 2016, 1604.02675.
[29] Francis Hsuan,et al. The {2}-inverse with applications in statistics , 1985 .
[30] Lothar Reichel,et al. Iterative Solution Methods for Large Linear Discrete Ill-Posed Problems , 1999 .
[31] M. Ćirić,et al. Outer and (b,c) inverses of tensors , 2018, Linear and Multilinear Algebra.
[32] Bingxue Wang,et al. Perturbation theory for core and core-EP inverses of tensor via Einstein product , 2019, Filomat.
[33] M. Z. Nashed,et al. Convergence of Newton-like methods for singular operator equations using outer inverses , 1993 .
[34] Chei-Chang Chiou,et al. A novel intelligent option price forecasting and trading system by multiple kernel adaptive filters , 2020, J. Comput. Appl. Math..
[35] Yimin Wei,et al. Solving Multi-linear Systems with $$\mathcal {M}$$M-Tensors , 2016, J. Sci. Comput..
[36] Yimin Wei,et al. A note on the representation and approximation of the outer inverse AT, S(2) of a matrix A , 2004, Appl. Math. Comput..
[37] Guoliang Chen,et al. Full-rank representation of generalized inverse AT, S(2) and its application , 2007, Comput. Math. Appl..
[38] Predrag S. Stanimirovic,et al. Full-rank representations of outer inverses based on the QR decomposition , 2012, Appl. Math. Comput..
[39] Dianne P. O'Leary,et al. Deblurring Images: Matrices, Spectra and Filtering , 2006, J. Electronic Imaging.
[40] Baohua Huang,et al. Krylov subspace methods to solve a class of tensor equations via the Einstein product , 2019, Numerical Linear Algebra with Applications.
[41] Bing Zheng,et al. Further results on Moore-Penrose inverses of tensors with application to tensor nearness problems , 2019, Comput. Math. Appl..
[42] Hua Xiang,et al. Randomized algorithms for total least squares problems , 2018, Numerical Linear Algebra with Applications.