Two hierarchically organized neural systems for object information in human visual cortex

The primate visual system is broadly organized into two segregated processing pathways, a ventral stream for object vision and a dorsal stream for space vision. Here, evidence from functional brain imaging in humans demonstrates that object representations are not confined to the ventral pathway, but can also be found in several areas along the dorsal pathway. In both streams, areas at intermediate processing stages in extrastriate cortex (V4, V3A, MT and V7) showed object-selective but viewpoint- and size-specific responses. In contrast, higher-order areas in lateral occipital and posterior parietal cortex (LOC, IPS1 and IPS2) responded selectively to objects independent of image transformations. Contrary to the two-pathways hypothesis, our findings indicate that basic object information related to shape, size and viewpoint may be represented similarly in two parallel and hierarchically organized neural systems in the ventral and dorsal visual pathways.

[1]  D. B. Bender,et al.  Visual properties of neurons in inferotemporal cortex of the Macaque. , 1972, Journal of neurophysiology.

[2]  Leslie G. Ungerleider Two cortical visual systems , 1982 .

[3]  R. Mansfield,et al.  Analysis of visual behavior , 1982 .

[4]  R. Desimone,et al.  Stimulus-selective properties of inferior temporal neurons in the macaque , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[5]  Leslie G. Ungerleider,et al.  Contour, color and shape analysis beyond the striate cortex , 1985, Vision Research.

[6]  M. Goodale,et al.  Separate visual pathways for perception and action , 1992, Trends in Neurosciences.

[7]  E C Wong,et al.  Processing strategies for time‐course data sets in functional mri of the human brain , 1993, Magnetic resonance in medicine.

[8]  J W Belliveau,et al.  Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. , 1995, Science.

[9]  R. Malach,et al.  Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[10]  R. Turner,et al.  Characterizing Evoked Hemodynamics with fMRI , 1995, NeuroImage.

[11]  D. C. Essen,et al.  Neural responses to polar, hyperbolic, and Cartesian gratings in area V4 of the macaque monkey. , 1996, Journal of neurophysiology.

[12]  Josh H. McDermott,et al.  Functional imaging of human visual recognition. , 1996, Brain research. Cognitive brain research.

[13]  G. Rizzolatti,et al.  Evidence for visuomotor priming effect , 1996, Neuroreport.

[14]  David L. Sheinberg,et al.  Visual object recognition. , 1996, Annual review of neuroscience.

[15]  R A Andersen,et al.  Multimodal integration for the representation of space in the posterior parietal cortex. , 1997, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[16]  D H Brainard,et al.  The Psychophysics Toolbox. , 1997, Spatial vision.

[17]  S C Rao,et al.  Integration of what and where in the primate prefrontal cortex. , 1997, Science.

[18]  G. Glover,et al.  Retinotopic organization in human visual cortex and the spatial precision of functional MRI. , 1997, Cerebral cortex.

[19]  D G Pelli,et al.  The VideoToolbox software for visual psychophysics: transforming numbers into movies. , 1997, Spatial vision.

[20]  John H. R. Maunsell,et al.  Shape selectivity in primate lateral intraparietal cortex , 1998, Nature.

[21]  M Corbetta,et al.  Frontoparietal cortical networks for directing attention and the eye to visual locations: identical, independent, or overlapping neural systems? , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[22]  K Tsutsui,et al.  Neural coding of 3D features of objects for hand action in the parietal cortex of the monkey. , 1998, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[23]  E. Rolls,et al.  View-invariant representations of familiar objects by neurons in the inferior temporal visual cortex. , 1998, Cerebral cortex.

[24]  S. Edelman,et al.  Cue-Invariant Activation in Object-Related Areas of the Human Occipital Lobe , 1998, Neuron.

[25]  Leslie G. Ungerleider,et al.  Increased Activity in Human Visual Cortex during Directed Attention in the Absence of Visual Stimulation , 1999, Neuron.

[26]  R W Cox,et al.  Real‐time 3D image registration for functional MRI , 1999, Magnetic resonance in medicine.

[27]  M. Goldberg,et al.  Space and attention in parietal cortex. , 1999, Annual review of neuroscience.

[28]  S. Edelman,et al.  Differential Processing of Objects under Various Viewing Conditions in the Human Lateral Occipital Complex , 1999, Neuron.

[29]  H. Sakata,et al.  Selectivity for the shape, size, and orientation of objects for grasping in neurons of monkey parietal area AIP. , 2000, Journal of neurophysiology.

[30]  N. Kanwisher,et al.  Cortical Regions Involved in Perceiving Object Shape , 2000, The Journal of Neuroscience.

[31]  Alex Martin,et al.  Representation of Manipulable Man-Made Objects in the Dorsal Stream , 2000, NeuroImage.

[32]  Z Kourtzi,et al.  Representation of Perceived Object Shape by the Human Lateral Occipital Complex , 2001, Science.

[33]  M. Sereno,et al.  Mapping of Contralateral Space in Retinotopic Coordinates by a Parietal Cortical Area in Humans , 2001, Science.

[34]  H. Sakata,et al.  From Three-Dimensional Space Vision to Prehensile Hand Movements: The Lateral Intraparietal Area Links the Area V3A and the Anterior Intraparietal Area in Macaques , 2001, The Journal of Neuroscience.

[35]  Alex R. Wade,et al.  Visual areas and spatial summation in human visual cortex , 2001, Vision Research.

[36]  C. Connor,et al.  Population coding of shape in area V4 , 2002, Nature Neuroscience.

[37]  T. Poggio,et al.  Neural mechanisms of object recognition , 2002, Current Opinion in Neurobiology.

[38]  M. Pinsk,et al.  Attention modulates responses in the human lateral geniculate nucleus , 2002, Nature Neuroscience.

[39]  Ravi S. Menon,et al.  Differential Effects of Viewpoint on Object-Driven Activation in Dorsal and Ventral Streams , 2002, Neuron.

[40]  Nikos K. Logothetis,et al.  Three-Dimensional Shape Representation in Monkey Cortex , 2002, Neuron.

[41]  Michael Erb,et al.  Object-selective responses in the human motion area MT/MST , 2002, Nature Neuroscience.

[42]  D. Heeger,et al.  Retinotopy and Functional Subdivision of Human Areas MT and MST , 2002, The Journal of Neuroscience.

[43]  Alex R. Wade,et al.  Functional measurements of human ventral occipital cortex: retinotopy and colour. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[44]  R. Henson,et al.  Multiple levels of visual object constancy revealed by event-related fMRI of repetition priming , 2002, Nature Neuroscience.

[45]  K. Grill-Spector The neural basis of object perception , 2003, Current Opinion in Neurobiology.

[46]  H. Sakata The role of the parietal cortex in grasping. , 2003, Advances in neurology.

[47]  H. Bülthoff,et al.  Representation of the perceived 3-D object shape in the human lateral occipital complex. , 2003, Cerebral cortex.

[48]  Marlene C. Richter,et al.  Retinotopic Organization and Functional Subdivisions of the Human Lateral Geniculate Nucleus: A High-Resolution Functional Magnetic Resonance Imaging Study , 2004, The Journal of Neuroscience.

[49]  K. Grill-Spector,et al.  The human visual cortex. , 2004, Annual review of neuroscience.

[50]  D. Heeger,et al.  Topographic organization for delayed saccades in human posterior parietal cortex. , 2005, Journal of neurophysiology.

[51]  D. Heeger,et al.  Topographic maps of visual spatial attention in human parietal cortex. , 2005, Journal of neurophysiology.

[52]  Svetlana S. Georgieva,et al.  Using Functional Magnetic Resonance Imaging to Assess Adaptation and Size Invariance of Shape Processing by Humans and Monkeys , 2005, The Journal of Neuroscience.

[53]  J. Culham,et al.  The role of parietal cortex in visuomotor control: What have we learned from neuroimaging? , 2006, Neuropsychologia.

[54]  Lotfi B Merabet,et al.  Visual Topography of Human Intraparietal Sulcus , 2007, The Journal of Neuroscience.

[55]  Sabine Kastner,et al.  Topographic maps in human frontal cortex revealed in memory-guided saccade and spatial working-memory tasks. , 2007, Journal of neurophysiology.

[56]  S. R. Lehky,et al.  Comparison of shape encoding in primate dorsal and ventral visual pathways. , 2007, Journal of neurophysiology.

[57]  R. K. Simpson Nature Neuroscience , 2022 .