Effects of post homogeneity heat treatment processes on microstructure evolution behavior and tensile mechanical properties of laser additive manufactured ultrahigh-strength AerMet100 steel

[1]  Xu Cheng,et al.  A new microsegregation model for rapid solidification multicomponent alloys and its application to single-crystal nickel-base superalloys of laser rapid directional solidification , 2016 .

[2]  Jie Su,et al.  Microstructure analysis and yield strength simulation in high Co–Ni secondary hardening steel , 2016 .

[3]  Hua-ming Wang,et al.  Microstructure characterization and mechanical behavior of laser additive manufactured ultrahigh-strength AerMet100 steel , 2016 .

[4]  Zhenwen Yang,et al.  Microstructural evolution, coarsening behavior of vanadium carbide and mechanical properties in the simulated heat-affected zone of modified medium manganese steel , 2016 .

[5]  X. Huo,et al.  Precipitation strengthening of titanium microalloyed high-strength steel plates with isothermal treatment , 2016 .

[6]  F. Xiao,et al.  Non-isothermal prior austenite grain growth of a high-Nb X100 pipeline steel during a simulated welding heat cycle process , 2016 .

[7]  R. Spolenak,et al.  Precipitation strengthening of Nb-stabilized TP347 austenitic steel by a dispersion of secondary Nb(C,N) formed upon a short-term hardening heat treatment , 2015 .

[8]  T. Nakamoto,et al.  Effect of retained austenite on subsequent thermal processing and resultant mechanical properties of selective laser melted 17–4 PH stainless steel , 2015 .

[9]  G. Was,et al.  The effects of grain boundary carbide density and strain rate on the stress corrosion cracking behavior of cold rolled Alloy 690 , 2015 .

[10]  Jeremy K. Mason,et al.  Grain boundary energy and curvature in Monte Carlo and cellular automata simulations of grain boundary motion , 2015 .

[11]  Yanyan Zhu,et al.  Grain morphology evolution behavior of titanium alloy components during laser melting deposition additive manufacturing , 2015 .

[12]  R. Balamuralikrishnan,et al.  Investigation of Clusters in Medium Carbon Secondary Hardening Ultra-high-strength Steel After Hardening and Aging Treatments , 2015, Metallurgical and Materials Transactions A.

[13]  Xin Lin,et al.  Microstructure and mechanical properties of laser solid formed 300M steel , 2015 .

[14]  Hui-bin Wu,et al.  Effect of Nb addition on the microstructure and mechanical properties of an 1800 MPa ultrahigh strength steel , 2015 .

[15]  B. Poorganji,et al.  Influence of microstructure on strain-controlled fatigue and fracture behavior of ultra high strength alloy steel AerMet 100 , 2014 .

[16]  Hua-ming Wang,et al.  Characterization of microstructure and mechanical properties of laser melting deposited Ti–6.5Al–3.5Mo–1.5Zr–0.3Si titanium alloy , 2014 .

[17]  Michael L. Schmidt,et al.  Influence of Microstructure and Load Ratio on Cyclic Fatigue and Final Fracture Behavior of Two High Strength Steels , 2014 .

[18]  H. M. Wang,et al.  Microstructure and tensile properties of laser melting deposited Ti–5Al–5Mo–5V–1Cr–1Fe near β titanium alloy , 2013 .

[19]  Dong Liu,et al.  Effect of Hot Isostatic Pressing on Fatigue Properties of Laser Melting Deposited AerMet100 Steel , 2013 .

[20]  H. Bhadeshia,et al.  Austenite grain growth in a nuclear pressure vessel steel , 2013 .

[21]  Brian H. Toby,et al.  GSAS‐II: the genesis of a modern open‐source all purpose crystallography software package , 2013 .

[22]  Gregory B Olson,et al.  Genomic materials design: The ferrous frontier , 2013 .

[23]  C. Hong,et al.  Influence of grain boundary carbides on mechanical properties of high nitrogen austenitic stainless steel , 2012 .

[24]  W. Poole,et al.  In situ measurement and modelling of austenite grain growth in a Ti/Nb microalloyed steel , 2012 .

[25]  H. M. Wang,et al.  Effect of heat treatment on microstructure and mechanical properties of laser melting deposited 1Cr12Ni2WMoVNb steel , 2010 .

[26]  W. Cai,et al.  Analysis of the elastic strain energy driving force for grain boundary migration using phase field simulation , 2010 .

[27]  H. M. Wang,et al.  Microstructure and mechanical properties of rapid directionally solidified Ni-base superalloy Rene′41 by laser melting deposition manufacturing , 2010 .

[28]  Yang Wang,et al.  Microstructure and mechanical properties of laser melting deposited 1Cr12Ni2WMoVNb steel , 2010 .

[29]  Fuguo Li,et al.  Development and validation of a processing map for Aermet100 steel , 2010 .

[30]  S. Felicelli,et al.  Dendrite growth simulation during solidification in the LENS process , 2010 .

[31]  C. Sinclair,et al.  The comparative effectiveness of Nb solute and NbC precipitates at impeding grain-boundary motion in Nb steels , 2008 .

[32]  Julie M. Schoenung,et al.  Thermal Behavior and Microstructure Evolution during Laser Deposition with Laser-Engineered Net Shaping: Part II. Experimental Investigation and Discussion , 2008 .

[33]  A. M. Deus,et al.  Rapid tooling by laser powder deposition : Process simulation using finite element analysis , 2005 .

[34]  Hu Zhengfei,et al.  High resolution electron microscopy of precipitates in high Co-Ni alloy steel. , 2003, Micron.

[35]  Fenghua Zhou,et al.  High tensile ductility in a nanostructured metal , 2002, Nature.

[36]  John R. Scully,et al.  Trap-governed hydrogen diffusivity and uptake capacity in ultrahigh-strength AERMET 100 steel , 2002 .

[37]  C. Park,et al.  Carbide precipitation and high-temperature strength of hot-rolled high-strength, low-alloy steels containing Nb and Mo , 2002 .

[38]  H. R. Yang,et al.  Effects of alloying additions and austenitizing treatments on secondary hardening and fracture behavior for martensitic steels containing both Mo and W , 2001 .

[39]  S. Ahn,et al.  Solidification microstructure and M2C carbide decomposition in a spray-formed high-speed steel , 1998 .

[40]  R. Ayer,et al.  On the characteristics of M2C carbides in the peak hardening regime of AerMet 100 steel , 1998 .

[41]  A. Atrens,et al.  Stress corrosion crack propagation in AerMet 100 , 1998 .

[42]  Vinayak P. Dravid,et al.  Microsegregation behavior during solidification and homogenization of AerMet100 steel , 1998 .

[43]  H. R. Yang,et al.  Secondary hardening and fracture behavior in alloy steels containing Mo, W, and Cr , 1997 .

[44]  Hyuck-Mo Lee,et al.  M2C precipitates in isothermal tempering of high Co-Ni secondary hardening steel , 1996 .

[45]  R. Ayer,et al.  Microstructural basis for the effect of chromium on the strength and toughness of AF1410-based high performance steels , 1996 .

[46]  R. Ayer,et al.  Transmission electron microscopy examination of hardening and toughening phenomena in Aermet 100 , 1993, Metallurgical and Materials Transactions A.

[47]  Hyuck-Mo Lee,et al.  Coarsening resistance of M2C carbides in secondary hardening steels: Part II. Alloy design aided by a thermochemical database , 1991 .

[48]  Hyuck-Mo Lee,et al.  Coarsening resistance of M2C carbides in secondary hardening steels: Part I. Theoretical model for multicomponent coarsening kinetics , 1991 .

[49]  Peter W Voorhees,et al.  Solute distribution around a coherent precipitate in a multicomponent alloy , 1991 .

[50]  M. Grujicic Implication of elastic coherency in secondary hardening of high Co-Ni martensitic steels , 1991, Journal of Materials Science.

[51]  Mats Hillert,et al.  Inhibition of grain growth by second-phase particles , 1988 .

[52]  P. R. Rios Overview no. 62 , 1987 .

[53]  M. Duesbery,et al.  On the theory of normal grain growth , 1974 .

[54]  Mats Hillert,et al.  On the theory of normal and abnormal grain growth , 1965 .

[55]  Joseph Marin,et al.  Mechanical behavior of engineering materials , 1962 .