An Introduction to Automated Deduction

In this chapter, we present an informal introduction to many of the methods currently used in automated deduction. The principal method for theorem proving that we discuss is resolution, but we are also substantially concerned with extending the resolution framework to reason more efficiently about particular theories.

[1]  Donald E. Knuth,et al.  Simple Word Problems in Universal Algebras††The work reported in this paper was supported in part by the U.S. Office of Naval Research. , 1970 .

[2]  Bruno Buchberger,et al.  Basic Features and Development of the Critical-Pair/Completion Procedure , 1985, RTA.

[3]  Anthony G. Cohn Mechanizing a Particularly Expressive Many Sorted Logic , 1979, IJCAI.

[4]  Alberto Martelli,et al.  An Efficient Unification Algorithm , 1982, TOPL.

[5]  Peter B. Andrews Theorem Proving via General Matings , 1981, JACM.

[6]  Donald W. Loveland,et al.  Automated theorem proving: a logical basis , 1978, Fundamental studies in computer science.

[7]  R. Kowalski,et al.  Linear Resolution with Selection Function , 1971 .

[8]  Carl Hewitt,et al.  Description and Theoretical Analysis (Using Schemata) of Planner: A Language for Proving Theorems and Manipulating Models in a Robot , 1972 .

[9]  François Fages,et al.  Associative-Commutative Unification , 1984, CADE.

[10]  Anthony G. Cohn,et al.  On the Solution of Schubert's Steamroller in Many-Sorted Logic , 1985, IJCAI.

[11]  Larry Wos,et al.  The Concept of Demodulation in Theorem Proving , 1967, JACM.

[12]  Gérard P. Huet,et al.  A Complete Proof of Correctness of the Knuth-Bendix Completion Algorithm , 1981, J. Comput. Syst. Sci..

[13]  Jörg H. Siekmann,et al.  Universal Unification , 1982, GWAI.

[14]  D. Loveland A Linear Format for Resolution , 1970 .

[15]  James B. Morris,et al.  E-Resolution: Extension of Resolution to Include the Equality Relation , 1969, IJCAI.

[16]  D. Knuth,et al.  Simple Word Problems in Universal Algebras , 1983 .

[17]  Richard J. Waldinger,et al.  QA4: A Procedural Calculus for Intuitive Reasoning. , 1972 .

[18]  Zohar Manna,et al.  A Deductive Approach to Program Synthesis , 1979, TOPL.

[19]  Ross A. Overbeek,et al.  Complexity and related enhancements for automated theorem-proving programs , 1976 .

[20]  D. Luckham Refinement Theorems in Resolution Theory , 1970 .

[21]  Daniel Brand,et al.  Proving Theorems with the Modification Method , 1975, SIAM J. Comput..

[22]  Joxan Jaffar,et al.  Completeness of the Negation as Failure Rule , 1983, IJCAI.

[23]  Chin-Liang Chang The Unit Proof and the Input Proof in Theorem Proving , 1970, JACM.

[24]  Gillier,et al.  Logic for Computer Science , 1986 .

[25]  Elmar Eder,et al.  Properties of Substitutions and Unifications , 1983, J. Symb. Comput..

[26]  Christoph Walther A Mechanical Solution of Schubert's Steamroller by Many-Sorted Resolution , 1984, AAAI.

[27]  Neil V. Murray Completely Non-Clausal Theorem Proving , 1982, Artif. Intell..

[28]  Mark E. Stickel A Complete Unification Algorithm for Associative-Commutative Functions , 1975, IJCAI.

[29]  Wolfgang Bibel,et al.  On Matrices with Connections , 1981, JACM.

[30]  J. van Vaalen An Extension of Unification to Substitution with an Application to Automatic Theorem Proving , 1975, IJCAI.

[31]  J. A. Robinson,et al.  Logic, form and function , 1979 .

[32]  Mark E. Stickel,et al.  Complete Sets of Reductions for Some Equational Theories , 1981, JACM.

[33]  Mike Paterson,et al.  Linear unification , 1976, STOC '76.

[34]  G. Huet,et al.  Equations and rewrite rules: a survey , 1980 .

[35]  Hector J. Levesque,et al.  An Essential Hybrid Reasoning System: Knowledge and Symbol Level Accounts of KRYPTON , 1985, IJCAI.

[36]  Larry Wos,et al.  Procedure Implementation Through Demodulation and Related Tricks , 1982, CADE.

[37]  Larry Wos,et al.  Efficiency and Completeness of the Set of Support Strategy in Theorem Proving , 1965, JACM.

[38]  Hélène Kirchner,et al.  Completion of a set of rules modulo a set of equations , 1984, SIAM J. Comput..

[39]  Mark E. Stickel,et al.  A Unification Algorithm for Associative-Commutative Functions , 1981, JACM.

[40]  Robert A. Kowalski,et al.  A Proof Procedure Using Connection Graphs , 1975, JACM.

[41]  Mabry Tyson,et al.  An Analysis of Consecutively Bounded Depth-First Search with Applications in Automated Deduction , 1985, IJCAI.

[42]  Vincent J. Digricoli Resolution by unification and equality , 1983 .

[43]  Jean-Marie Hullot,et al.  Canonical Forms and Unification , 1980, CADE.

[44]  Gérard P. Huet,et al.  Confluent Reductions: Abstract Properties and Applications to Term Rewriting Systems , 1980, J. ACM.

[45]  Wolfgang Bibel,et al.  Automated Theorem Proving , 1987, Artificial Intelligence / Künstliche Intelligenz.

[46]  Robert A. Kowalski,et al.  Algorithm = logic + control , 1979, CACM.

[47]  George A. Robinson,et al.  Paramodulation and set of support , 1970 .

[48]  Manfred Schmidt-Schauß A Many-Sorted Calculus with Polymorphic Functions Based on Resolution and Paramodulation , 1985, IJCAI.

[49]  John Wylie Lloyd,et al.  Foundations of Logic Programming , 1987, Symbolic Computation.

[50]  Mark E. Stickel,et al.  A Nonclausal Connection-Graph Resolution Theorem-Proving Program , 1982, AAAI.

[51]  Christoph Walther,et al.  A Many-Sorted Calculus Based on Resolution and Paramodulation , 1982, IJCAI.

[52]  Jörg H. Siekmann,et al.  Completeness and Soundness of the Connection Graph Proof , 1978, AISB/GI.

[53]  J. Hullot A Catalogue of Canonical Term Rewriting Systems. , 1980 .

[54]  Mark Edward Stickel Mechanical theorem proving and artificial intelligence languages. , 1977 .

[55]  Christoph Walther,et al.  Unification in Many-Sorted Theories , 1984, ECAI.

[56]  Verónica Dahl,et al.  Translating Spanish Into Logic Through Logic , 1981, CL.

[57]  Robert A. Kowalski,et al.  Logic for problem solving , 1982, The computer science library : Artificial intelligence series.

[58]  Donald W. Loveland,et al.  A Simplified Format for the Model Elimination Theorem-Proving Procedure , 1969, J. ACM.

[59]  Jieh Hsiang,et al.  Refutational Theorem Proving Using Term-Rewriting Systems , 1985, Artif. Intell..

[60]  J. A. Robinson,et al.  A Machine-Oriented Logic Based on the Resolution Principle , 1965, JACM.

[61]  Hector J. Levesque,et al.  Krypton: A Functional Approach to Knowledge Representation , 1983, Computer.

[62]  Vincent J. Digrigoli The efficacy of rue resolution experimental results and heuristic theory , 1981, IJCAI 1981.

[63]  Richard C. T. Lee,et al.  Symbolic logic and mechanical theorem proving , 1973, Computer science classics.

[64]  James R. Slagle,et al.  Automated Theorem-Proving for Theories with Simplifiers Commutativity, and Associativity , 1974, JACM.

[65]  Mark E. Stickel Theory Resolution: Building in Nonequational Theories , 1983, AAAI.

[66]  Gerard Huet,et al.  Conflunt reductions: Abstract properties and applications to term rewriting systems , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).

[67]  Lawrence J. Henschen,et al.  An Improved Filter for Literal Indexing in Resolution Systems , 1981, IJCAI.

[68]  Gérard P. Huet,et al.  An Algorithm to Generate the Basis of Solutions to Homogeneous Linear Diophantine Equations , 1978, Inf. Process. Lett..

[69]  G. Makanin The Problem of Solvability of Equations in a Free Semigroup , 1977 .

[70]  Zohar Manna,et al.  The logical basis for computer programming , 1985 .

[71]  Paliath Narendran,et al.  Complexity of Matching Problems , 1985, J. Symb. Comput..

[72]  Ross A. Overbeek An implementation of hyper-resolution , 1975 .