Extracting higher order critical points and topological simplification of 3D vector fields

This paper presents an approach to extracting and classifying higher order critical points of 3D vector fields. To do so, we place a closed convex surface s around the area of interest. Then we show that the complete 3D classification of a critical point into areas of different flow behavior is equivalent to extracting the topological skeleton of an appropriate 2D vector field on s, if each critical point is equipped with an additional bit of information. Out of this skeleton, we create an icon which replaces the complete topological structure inside s for the visualization. We apply our method to find a simplified visual representation of clusters of critical points, leading to expressive visualizations of topologically complex 3D vector fields.

[1]  Robert van Liere,et al.  Visualization of Global Flow Structures Using Multiple Levels of Topology , 1999, VisSym.

[2]  T. Steinke,et al.  Visualization of Vector Fields in Quantum Chemistry , 1996 .

[3]  Lambertus Hesselink,et al.  Representation and display of vector field topology in fluid flow data sets , 1989, Computer.

[4]  Gerik Scheuermann,et al.  Detection and Visualization of Closed Streamlines in Planar Flows , 2001, IEEE Trans. Vis. Comput. Graph..

[5]  Hans-Peter Seidel,et al.  Boundary switch connectors for topological visualization of complex 3D vector fields , 2004, VISSYM'04.

[6]  Robert van Liere,et al.  Collapsing flow topology using area metrics , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[7]  Helwig Löffelmann,et al.  Visualizing Dynamical Systems near Critical Points , 1998 .

[8]  Hans Hagen,et al.  Continuous topology simplification of planar vector fields , 2001, Proceedings Visualization, 2001. VIS '01..

[9]  Hans-Peter Seidel,et al.  Saddle connectors - an approach to visualizing the topological skeleton of complex 3D vector fields , 2003, IEEE Visualization, 2003. VIS 2003..

[10]  Bernd Hamann,et al.  Topological segmentation in three-dimensional vector fields , 2004, IEEE Transactions on Visualization and Computer Graphics.

[11]  Suresh K. Lodha,et al.  Topology preserving compression of 2D vector fields , 2000, Proceedings Visualization 2000. VIS 2000 (Cat. No.00CH37145).

[12]  Hans Hagen,et al.  A topology simplification method for 2D vector fields , 2000 .

[13]  Stephen Mann,et al.  Computing singularities of 3D vector fields with geometric algebra , 2002, IEEE Visualization, 2002. VIS 2002..

[14]  Holger Theisel Designing 2D Vector Fields of Arbitrary Topology , 2002, Comput. Graph. Forum.

[15]  Robert S. Laramee,et al.  The State of the Art in Flow Visualisation: Feature Extraction and Tracking , 2003, Comput. Graph. Forum.

[16]  Hans-Peter Seidel,et al.  Topological Construction and Visualization of Higher Order 3D Vector Fields , 2004, Comput. Graph. Forum.

[17]  Al Globus,et al.  A tool for visualizing the topology of three-dimensional vector fields , 1991, Proceeding Visualization '91.

[18]  Rüdiger Westermann,et al.  Topology-Preserving Smoothing of Vector Fields , 2001, IEEE Trans. Vis. Comput. Graph..

[19]  Gerik Scheuermann,et al.  Visualizing Nonlinear Vector Field Topology , 1998, IEEE Trans. Vis. Comput. Graph..

[20]  Hans-Christian Hege,et al.  amira: A Highly Interactive System for Visual Data Analysis , 2005, The Visualization Handbook.

[21]  W. J. Orville-Thomas Atoms in Molecules — a Quantum Theory , 1996 .