Functional investigation of zero lead radial shaft seal counter-surfaces turned with a special method
暂无分享,去创建一个
Ralf Müller | Jan C. Aurich | Frank Schneider | Benjamin Kirsch | Erik von Harbou | Balázs Magyar | Stefan Thielen | B. Sauer | Patrick Mayer | J. Aurich | R. Müller | E. Harbou | B. Kirsch | Patrick Mayer | S. Thielen | B. Magyar | F. Schneider | Bernd Sauer
[1] Bharat Bhushan,et al. Principles and Applications to Tribology: Bhushan/Introduction , 2013 .
[2] Si-Wei Zhang,et al. Tribology of elastomers , 2004 .
[3] Sangkee Min,et al. Recent Advances in Mechanical Micromachining , 2006 .
[4] Ekkard Brinksmeier,et al. Tribological behavior of micro structured surfaces for micro forming tools , 2010 .
[5] Ran Zhang,et al. Drallfreie Bearbeitung mittels Start-Stopp-Drehverfahren , 2014 .
[6] Michael Narten. Abdichtung von fließfettgeschmierten Getrieben mit Radialwellendichtungen - Reibungsminderung durch Makrostrukturierung der Dichtungsgegenlauffläche , 2014 .
[7] Simon C. Tung,et al. Automotive tribology overview of current advances and challenges for the future , 2004 .
[8] Kenneth Holmberg,et al. Global energy consumption due to friction in trucks and buses , 2014 .
[9] Steffen Jung,et al. Numerical simulation and experimental study of shaft pumping by laser structured shafts with rotary lip seals , 2011 .
[10] Xiaohong Jia,et al. The effect of axial position of contact zone on the performance of radial lip seals with a texturing shaft surface , 2016 .
[11] B. Bhushan. Principles and Applications of Tribology , 1999 .
[12] Jörg Seewig,et al. Lead characterisation by an objective evaluation method , 2009 .
[13] Xiaohong Jia,et al. The effect of texture on the shaft surface on the sealing performance of radial lip seals , 2014 .
[14] Alexander Brosius,et al. Features of austenitic steels' microstructure following plastic deformation , 2012 .
[15] Peter Schuler. Einfluss von Grenzflächeneffekten auf den Dichtmechanismus der Radial-Wellendichtung , 2014 .
[16] Jan C. Aurich,et al. Characterization of deformation induced surface hardening during cryogenic turning of AISI 347 , 2014 .
[17] Jan C. Aurich,et al. Deformation Induced Surface Hardening when Turning Metastable Austenitic Steel AISI 347 with Different Cryogenic Cooling Strategies , 2014 .
[18] Ekkard Brinksmeier,et al. Surface hardening by strain induced martensitic transformation , 2008, Prod. Eng..
[19] Kenneth Holmberg,et al. Global energy consumption due to friction in passenger cars , 2012 .
[20] Lyndon Scott Stephens,et al. Effect of Shaft Microcavity Patterns for Flow and Friction Control on Radial Lip Seal Performance–A Feasibility Study , 2009 .
[21] Philip C. Hadinata,et al. Soft Elastohydrodynamic Analysis of Radial Lip Seals With Deterministic Microasperities on the Shaft , 2006 .
[22] Thomas Kunstfeld. Einfluss der Wellenoberfläche auf das Dichtverhalten von Radial-Wellendichtungen , 2005 .
[23] Jan C. Aurich,et al. Investigation of wear resistance of dry and cryogenic turned metastable austenitic steel shafts and dry turned and ground carburized steel shafts in the radial shaft seal ring system , 2015 .
[24] Kay Wiehler. Tribologie und Fluidverhalten in der Dichtzone von Radialwellendichtringen unter Berücksichtigung makromolekularer Bestandteile der Schmierfluide , 2002 .
[25] Richard F. Salant. Theory of lubrication of elastomeric rotary shaft seals , 1999 .
[26] Wei Li,et al. EXPERIMENTAL BENCHMARKING OF SURFACE TEXTURED LIP SEAL MODELS , 2012 .
[27] B. Scholtes,et al. Deep rolling of austenitic steel AISI 304 at different temperatures – near surface microstructures and fatigue , 2012 .
[28] Balázs Magyar,et al. A comprehensive model of wear, friction and contact temperature in radial shaft seals☆ , 2014 .