Kronecker coefficients via Symmetric Functions and Constant Term Identities
暂无分享,去创建一个
Mike Zabrocki | Adriano M. Garsia | Nolan Wallach | Guoce Xin | N. Wallach | A. Garsia | G. Xin | M. Zabrocki
[1] Guoce Xin. The Ring of Malcev-Neumann Series and the Residue Theorem , 2004 .
[2] Nolan R. Wallach. Quantum Computing and Entanglement for Mathematicians , 2008 .
[3] Nolan R. Wallach. The Hilbert Series of Measures of Entanglement for 4 Qubits , 2005 .
[4] D. E. Littlewood,et al. The Kronecker Product of Symmetric Group Representations , 1956 .
[5] Guoce Xin. A Fast Algorithm for MacMahon's Partition Analysis , 2004, Electron. J. Comb..
[6] J. Luque,et al. Polynomial invariants of four qubits , 2002, quant-ph/0212069.
[7] J. Luque,et al. Algebraic invariants of five qubits , 2005, quant-ph/0506058.
[8] Adriano M. Garsia,et al. Shuffles of permutations and the Kronecker product , 1985, Graphs Comb..
[9] George E. Andrews,et al. MacMahon’s Partition Analysis: I. The Lecture Hall Partition Theorem , 1998 .
[10] Mike Zabrocki,et al. Hilbert series of invariants, constant terms and Kostka-Foulkes polynomials , 2009, Discret. Math..
[11] Guoce Xin,et al. Invariants, Kronecker products, and combinatorics of some remarkable Diophantine systems , 2009, Adv. Appl. Math..
[12] R. H. Makar. On the Analysis of the Kronecker Product of Irreducible Representations of the Symmetric Group , 1949 .
[13] I. G. MacDonald,et al. Symmetric functions and Hall polynomials , 1979 .
[14] George E. Andrews,et al. MacMahon's Partition Analysis: The Omega Package , 2001, Eur. J. Comb..
[15] Jean-Yves Thibon,et al. Reduced notation, inner plethysms and the symmetric group , 1993 .