Clumped isotope evidence for Early Jurassic extreme polar warmth and high climate sensitivity

Abstract. Periods of high atmospheric CO2 levels during the Cretaceous-Early Paleogene (~140 to 33 My ago) were marked by very high polar temperatures and reduced latitudinal gradients relative to the Holocene. These features represent a challenge for most climate models, implying either higher-than-predicted climate sensitivity to atmospheric CO2, or systematic biases or misinterpretations in proxy data. Here, we present a reconstruction of marine temperatures at polar (>80°) and mid (~40°) paleolatitudes during the Early Jurassic (~180 My ago) based on the clumped isotope (Δ47) and oxygen-isotope (δ18Oc) analyses of mildly buried pristine mollusc shells. Reconstructed calcification temperatures range from ~8 to ~18 °C in the Toarcian Arctic and from ~24 to ~28 °C in Pliensbachian mid-paleolatitudes. These polar temperatures were ~10–20 °C higher than present along with reduced latitudinal gradients. Reconstructed seawater oxygen isotope values (δ18Ow) of −1.5 to 0.5 ‰ VSMOW and of −5 to −2.5 ‰ VSMOW at mid and polar paleolatitudes, respectively, point to a significant freshwater contribution in Arctic regions. This highlight the risk of assuming the same δ18Osw value for δ18O-derived temperature from different oceanic regions. These findings provide critical new constraints for model simulations of Jurassic temperatures and δ18Osw values and suggest that high climate sensitivity is a hallmark of greenhouse climates since at least 180 My.

[1]  P. Wilby,et al.  Marine temperatures underestimated for past greenhouse climate , 2021, Scientific Reports.

[2]  P. Hofmann,et al.  Impact of global cooling on Early Cretaceous high pCO2 world during the Weissert Event , 2021, Nature Communications.

[3]  M. Ziegler,et al.  Absolute seasonal temperature estimates from clumped isotopes in bivalve shells suggest warm and variable greenhouse climate , 2021, Communications Earth & Environment.

[4]  M. Ziegler,et al.  Internal Water Facilitates Thermal Resetting of Clumped Isotopes in Biogenic Aragonite , 2021, Geochemistry, Geophysics, Geosystems.

[5]  G. Henkes,et al.  A disordered kinetic model for clumped isotope bond reordering in carbonates , 2021, Earth and Planetary Science Letters.

[6]  A. Ivanov,et al.  Formation conditions and evolution of oil and gas source strata of the Laptev sea shelf ore and gas province , 2021 .

[7]  S. Bernasconi,et al.  Reconstructing the magnitude of Early Toarcian (Jurassic) warming using the reordered clumped isotope compositions of belemnites , 2021 .

[8]  S. Bernasconi,et al.  A Unified Clumped Isotope Thermometer Calibration (0.5–1,100°C) Using Carbonate‐Based Standardization , 2021, Geophysical Research Letters.

[9]  J. Eiler,et al.  InterCarb: A Community Effort to Improve Interlaboratory Standardization of the Carbonate Clumped Isotope Thermometer Using Carbonate Standards , 2020, Geochemistry, geophysics, geosystems : G(3).

[10]  M. Daëron Full Propagation of Analytical Uncertainties in Δ47 Measurements , 2020, Geochemistry, Geophysics, Geosystems.

[11]  A. Sluijs,et al.  Late Paleocene–early Eocene Arctic Ocean sea surface temperatures: reassessing biomarker paleothermometry at Lomonosov Ridge , 2020, Climate of the Past.

[12]  T. Rasbury,et al.  Early Jurassic climate and atmospheric CO2 concentration in the Sichuan paleobasin, southwestern China , 2020, Climate of the Past.

[13]  S. Bernasconi,et al.  Spatial pattern of super-greenhouse warmth controlled by elevated specific humidity , 2020, Nature Geoscience.

[14]  L. Schwark,et al.  Molecular paleothermometry of the early Toarcian climate perturbation , 2020 .

[15]  S. Bernasconi,et al.  Unravelling Middle to Late Jurassic palaeoceanographic and palaeoclimatic signals in the Hebrides Basin using belemnite clumped isotope thermometry , 2020, Earth and Planetary Science Letters.

[16]  J. Fiebig,et al.  Carbonate clumped isotope evidence for latitudinal seawater temperature gradients and the oxygen isotope composition of Early Cretaceous seas , 2020, Palaeogeography, Palaeoclimatology, Palaeoecology.

[17]  L. Bopp,et al.  Stripping back the modern to reveal the Cenomanian–Turonian climate and temperature gradient underneath , 2020, Climate of the Past.

[18]  M. Pagel,et al.  Supplemental Material: Past hot fluid flows in limestones detected by Δ47–(U-Pb) and not recorded by other geothermometers , 2020, Geology.

[19]  B. Otto‐Bliesner,et al.  Simulation of early Eocene water isotopes using an Earth system model and its implication for past climate reconstruction , 2020 .

[20]  T. Lenton,et al.  Warm afterglow from the Toarcian Oceanic Anoxic Event drives the success of deep-adapted brachiopods , 2020, Scientific Reports.

[21]  J. Fiebig,et al.  Southern high-latitude warmth during the Jurassic–Cretaceous: New evidence from clumped isotope thermometry , 2019, Geology.

[22]  J. Eiler,et al.  Mechanism of solid-state clumped isotope reordering in carbonate minerals from aragonite heating experiments , 2019, Geochimica et Cosmochimica Acta.

[23]  M. Rogov,et al.  Marine Reptiles and Climates of the Jurassic and Cretaceous of Siberia , 2019, Stratigraphy and Geological Correlation.

[24]  R. Pancost,et al.  Late Cretaceous Temperature Evolution of the Southern High Latitudes: A TEX86 Perspective , 2019, Paleoceanography and Paleoclimatology.

[25]  S. Petersen,et al.  Climate of the Late Cretaceous North American Gulf and Atlantic Coasts , 2018, Cretaceous Research.

[26]  M. Ziegler,et al.  Reducing Uncertainties in Carbonate Clumped Isotope Analysis Through Consistent Carbonate‐Based Standardization , 2018, Geochemistry, geophysics, geosystems : G(3).

[27]  M. Rogov,et al.  Clumped isotope record of salinity variations in the Subboreal Province at the Middle–Late Jurassic transition , 2018, Global and Planetary Change.

[28]  M. Huber,et al.  Synchronous tropical and polar temperature evolution in the Eocene , 2018, Nature.

[29]  M. Clapham,et al.  IDENTIFYING THE TICKS OF BIVALVE SHELL CLOCKS: SEASONAL GROWTH IN RELATION TO TEMPERATURE AND FOOD SUPPLY , 2018, Palaios.

[30]  P. Valdes,et al.  Eocene greenhouse climate revealed by coupled clumped isotope-Mg/Ca thermometry , 2018, Proceedings of the National Academy of Sciences.

[31]  S. Brassell,et al.  Cretaceous sea-surface temperature evolution: Constraints from TEX86 and planktonic foraminiferal oxygen isotopes , 2017 .

[32]  F. Baudin,et al.  Subtropical climate conditions and mangrove growth in Arctic Siberia during the early Eocene , 2017 .

[33]  P. Pellenard,et al.  Climatic and palaeoceanographic changes during the Pliensbachian (Early Jurassic) inferred from clay mineralogy and stable isotope (C-O) geochemistry (NW Europe) , 2017 .

[34]  P. Bown,et al.  Early Jurassic North Atlantic sea‐surface temperatures from TEX86 palaeothermometry , 2017 .

[35]  D. Blamart,et al.  Absolute isotopic abundance ratios and the accuracy of Δ47 measurements , 2016 .

[36]  N. Sheldon,et al.  Temperature and salinity of the Late Cretaceous Western Interior Seaway , 2016 .

[37]  S. Petersen,et al.  End-Cretaceous extinction in Antarctica linked to both Deccan volcanism and meteorite impact via climate change , 2016, Nature Communications.

[38]  W. Ambrose,et al.  Decoding the oxygen isotope signal for seasonal growth patterns in Arctic bivalves , 2016 .

[39]  A. Sluijs,et al.  A Paleolatitude Calculator for Paleoclimate Studies , 2015, PloS one.

[40]  J. Eiler,et al.  The kinetics of solid-state isotope-exchange reactions for clumped isotopes: A study of inorganic calcites and apatites from natural and experimental samples , 2015, American Journal of Science.

[41]  C. Lécuyer,et al.  Oxygen isotope composition of vertebrate phosphates from Cherves-de-Cognac (Berriasian, France): Environmental and ecological significance , 2014 .

[42]  Stefan Schouten,et al.  Paleocene-Eocene warming and biotic response in the epicontinental West Siberian Sea , 2014 .

[43]  B. Passey,et al.  Temperature limits for preservation of primary calcite clumped isotope paleotemperatures , 2014 .

[44]  R. Hoffmann,et al.  The middle Toarcian cold snap: Trigger of mass extinction and carbonate factory demise , 2014 .

[45]  J. Pozzi,et al.  Reconstruction of low temperature (<100°C) burial in sedimentary basins: A comparison of geothermometer in the intracontinental Paris Basin , 2014 .

[46]  L. Ivany,et al.  Pronounced zonal heterogeneity in Eocene southern high-latitude sea surface temperatures , 2014, Proceedings of the National Academy of Sciences.

[47]  R. Janssen,et al.  Oxygen and carbon stable isotope records of marine vertebrates from the type Maastrichtian, The Netherlands and northeast Belgium (Late Cretaceous) , 2013 .

[48]  Philip L. Gibbard,et al.  The ICS International Chronostratigraphic Chart , 2013 .

[49]  B. Nikitenko,et al.  Jurassic and Cretaceous stratigraphy of the Anabar area (Arctic Siberia, Laptev Sea coast) and the Boreal zonal standard , 2013 .

[50]  Christine Berry Identifying ticks , 2013, Veterinary Record.

[51]  J. Marotzke,et al.  A model–data comparison for a multi-model ensemble of early Eocene atmosphere–ocean simulations: EoMIP , 2012 .

[52]  E. Tohver,et al.  Phanerozoic polar wander, palaeogeography and dynamics , 2012 .

[53]  Y. Donnadieu,et al.  Modeling evidences for global warming, Arctic seawater freshening, and sluggish oceanic circulation during the Early Toarcian anoxic event , 2012 .

[54]  M. Rogov,et al.  Polar record of Early Jurassic massive carbon injection , 2011 .

[55]  M. Kohn,et al.  Isotopic evaluation of ocean circulation in the Late Cretaceous North American seaway , 2011 .

[56]  L. Ivany,et al.  Warm, not super-hot, temperatures in the early Eocene subtropics , 2011 .

[57]  M. Huber,et al.  Climate of the Past Discussions , 2005 .

[58]  J. Damsté,et al.  Warm Middle Jurassic–Early Cretaceous high-latitude sea-surface temperatures from the Southern Ocean , 2011 .

[59]  M. Joachimski,et al.  Climatic ups and downs in a disturbed Jurassic world , 2011 .

[60]  P. Valdes,et al.  Modelling the oxygen isotope distribution of ancient seawater using a coupled ocean–atmosphere GCM: Implications for reconstructing early Eocene climate , 2010 .

[61]  M. Philippe,et al.  Secular environmental precursors to Early Toarcian (Jurassic) extreme climate changes , 2010 .

[62]  L. Reisberg,et al.  Water mass exchange and variations in seawater temperature in the NW Tethys during the Early Jurassic: Evidence from neodymium and oxygen isotopes of fish teeth and belemnites , 2009 .

[63]  D. Pollard,et al.  Simulation of modern and middle Cretaceous marine δ18O with an ocean‐atmosphere general circulation model , 2008 .

[64]  B. Schöne The curse of physiology—challenges and opportunities in the interpretation of geochemical data from mollusk shells , 2008 .

[65]  A. Mucci,et al.  Phosphoric acid fractionation factors for calcite and aragonite between 25 and 75 °C: Revisited , 2007 .

[66]  T. Coplen Calibration of the calcite–water oxygen-isotope geothermometer at Devils Hole, Nevada, a natural laboratory , 2007 .

[67]  M. Huber,et al.  Arctic hydrology during global warming at the Palaeocene/Eocene thermal maximum , 2006, Nature.

[68]  D. Roche,et al.  Effect of changes in δ18O content of the surface ocean on estimated sea surface temperatures in past warm climate , 2006 .

[69]  M. Huber,et al.  Subtropical Arctic Ocean temperatures during the Palaeocene/Eocene thermal maximum , 2006, Nature.

[70]  S. Hesselbo,et al.  Changes in carbon dioxide during an oceanic anoxic event linked to intrusion into Gondwana coals , 2005, Nature.

[71]  C. Lécuyer,et al.  Oxygen isotope compositions of Late Jurassic vertebrate remains from lithographic limestones of western Europe: implications for the ecology of fish, turtles, and crocodilians , 2005 .

[72]  Stefan Schouten,et al.  High temperatures in the Late Cretaceous Arctic Ocean , 2004, Nature.

[73]  L. Ivany,et al.  100 years in the dark: Extreme longevity of Eocene bivalves from Antarctica , 2004 .

[74]  G. Dromart,et al.  Thermal evolution of Cretaceous Tethyan marine waters inferred from oxygen isotope composition of fish tooth enamels , 2003 .

[75]  L. Peck,et al.  Growth and tissue mass cycles in the infaunal bivalve Yoldia eightsi at Signy Island, Antarctica , 2000, Polar Biology.

[76]  A. G. Fischer,et al.  Oxygen Isotopes from Turtle Bone: Applications for Terrestrial Paleoclimates? , 1999 .

[77]  P. Markwick Fossil crocodilians as indicators of Late Cretaceous and Cenozoic climates: implications for using palaeontological data in reconstructing palaeoclimate , 1998 .

[78]  Sang-Tae Kim,et al.  Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates , 1997 .

[79]  K. Różański,et al.  Relation Between Long-Term Trends of Oxygen-18 Isotope Composition of Precipitation and Climate , 1992, Science.

[80]  H. Jenkyns,et al.  Black shales and carbon isotopes in pelagic sediments from the Tethyan Lower Jurassic , 1986 .

[81]  J. Erez,et al.  Experimental paleotemperature equation for planktonic foraminifera , 1983 .

[82]  Samuel Epstein,et al.  REVISED CARBONATE-WATER ISOTOPIC TEMPERATURE SCALE , 1953 .

[83]  M. Gay-Lussac Phosphoric acid , 1829, Definitions.

[84]  J. Spangenberg,et al.  Early Jurassic climatic trends in the south-Tethyan margin , 2020 .

[85]  A. Gale,et al.  A new echinoderm Lagerstätte from the Pliensbachian (Early Jurassic) of the French Ardennes , 2011 .

[86]  John D. Zardus,et al.  Protobranch bivalves. , 2002, Advances in marine biology.

[87]  Ni Craig Growth of the bivalve Nucula annulata in nutrient-enriched environments , 1994 .

[88]  T. Ku,et al.  OXYGEN AND CARBON ISOTOPE FRACTIONATION IN BIOGENIC ARAGONITE: TEMPERATURE EFFECTS , 1986 .

[89]  N. Shackleton,et al.  Paleotemperature History of the Cenozoic and the Initiation of Antarctic Glaciation: Oxygen and Carbon Isotope Analyses in DSDP Sites 277, 279 and 281 , 1975 .