Conditions for Rapid and Torpid Mixing of Parallel and Simulated Tempering on Multimodal Distributions

We obtain upper bounds on the convergence rates of Markov chains constructed by parallel and simulated tempering. These bounds are used to provide a set of sucien t conditions for torpid mixing of both techniques. We apply these conditions to show torpid mixing of parallel and simulated tempering for three examples: a normal mixture model with unequal covariances in R M and the mean-eld Potts model with q 3, regardless of the number and choice of temperatures, and the meaneld Ising model when an insucien t set of temperatures is chosen. The latter result contrasts with the rapid mixing of parallel and simulated tempering on the meaneld Ising model with a linearly increasing set of temperatures as shown previously.

[1]  J. Doob Stochastic processes , 1953 .

[2]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[3]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  Wang,et al.  Nonuniversal critical dynamics in Monte Carlo simulations. , 1987, Physical review letters.

[5]  W. Wong,et al.  The calculation of posterior distributions by data augmentation , 1987 .

[6]  A. Sokal,et al.  Bounds on the ² spectrum for Markov chains and Markov processes: a generalization of Cheeger’s inequality , 1988 .

[7]  李幼升,et al.  Ph , 1989 .

[8]  Adrian F. M. Smith,et al.  Sampling-Based Approaches to Calculating Marginal Densities , 1990 .

[9]  C. Geyer Markov Chain Monte Carlo Maximum Likelihood , 1991 .

[10]  N. Madras,et al.  THE SELF-AVOIDING WALK , 2006 .

[11]  P. Diaconis,et al.  Geometric Bounds for Eigenvalues of Markov Chains , 1991 .

[12]  Alistair Sinclair,et al.  Improved Bounds for Mixing Rates of Markov Chains and Multicommodity Flow , 1992, Combinatorics, Probability and Computing.

[13]  G. Parisi,et al.  Simulated tempering: a new Monte Carlo scheme , 1992, hep-lat/9205018.

[14]  P. Diaconis,et al.  COMPARISON THEOREMS FOR REVERSIBLE MARKOV CHAINS , 1993 .

[15]  J. Q. Smith,et al.  1. Bayesian Statistics 4 , 1993 .

[16]  L. Tierney Markov Chains for Exploring Posterior Distributions , 1994 .

[17]  Bradley P. Carlin,et al.  Markov Chain Monte Carlo conver-gence diagnostics: a comparative review , 1996 .

[18]  C. Geyer,et al.  Annealing Markov chain Monte Carlo with applications to ancestral inference , 1995 .

[19]  J. Rosenthal RATES OF CONVERGENCE FOR GIBBS SAMPLING FOR VARIANCE COMPONENT MODELS , 1995 .

[20]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .

[21]  W. Gilks,et al.  Adaptive Rejection Metropolis Sampling Within Gibbs Sampling , 1995 .

[22]  Geoffrey E. Hinton,et al.  Bayesian Learning for Neural Networks , 1995 .

[23]  Mark Jerrum,et al.  The Markov chain Monte Carlo method: an approach to approximate counting and integration , 1996 .

[24]  P. Diaconis,et al.  LOGARITHMIC SOBOLEV INEQUALITIES FOR FINITE MARKOV CHAINS , 1996 .

[25]  Peter Green,et al.  Markov chain Monte Carlo in Practice , 1996 .

[26]  Ravi Kannan,et al.  Sampling according to the multivariate normal density , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[27]  Dorit S. Hochbaum,et al.  Approximation Algorithms for NP-Hard Problems , 1996 .

[28]  Dorit S. Hochba,et al.  Approximation Algorithms for NP-Hard Problems , 1997, SIGA.

[29]  J. Rosenthal,et al.  Geometric Ergodicity and Hybrid Markov Chains , 1997 .

[30]  Michael I. Jordan Graphical Models , 2003 .

[31]  M. Piccioni,et al.  Importance sampling for families of distributions , 1999 .

[32]  M. Jerrum,et al.  The Swendsen–Wang Process Does Not Always Mix Rapidly , 1999 .

[33]  Hoon Kim,et al.  Monte Carlo Statistical Methods , 2000, Technometrics.

[34]  S. Q. s3idChMn,et al.  Evolutionary Monte Carlo: Applications to C_p Model Sampling and Change Point Problem , 2000 .

[35]  Faming Liang,et al.  EVOLUTIONARY MONTE CARLO: APPLICATIONS TO Cp MODEL SAMPLING AND CHANGE POINT PROBLEM , 2000 .

[36]  Radford M. Neal,et al.  ANALYSIS OF A NONREVERSIBLE MARKOV CHAIN SAMPLER , 2000 .

[37]  R. Tweedie,et al.  Geometric L 2 and L 1 convergence are equivalent for reversible Markov chains , 2001, Journal of Applied Probability.

[38]  W. Wong,et al.  Real-Parameter Evolutionary Monte Carlo With Applications to Bayesian Mixture Models , 2001 .

[39]  D. Randall,et al.  Markov chain decomposition for convergence rate analysis , 2002 .

[40]  P. Green,et al.  Hidden Markov Models and Disease Mapping , 2002 .

[41]  Djc MacKay,et al.  Slice sampling - Discussion , 2003 .

[42]  Zhongrong Zheng On swapping and simulated tempering algorithms , 2003 .

[43]  Sw. Banerjee,et al.  Hierarchical Modeling and Analysis for Spatial Data , 2003 .

[44]  Neal Madras,et al.  On the swapping algorithm , 2003, Random Struct. Algorithms.

[45]  J. Rosenthal,et al.  General state space Markov chains and MCMC algorithms , 2004, math/0404033.

[46]  C. Predescu,et al.  The incomplete beta function law for parallel tempering sampling of classical canonical systems. , 2003, The Journal of chemical physics.

[47]  Dana Randall,et al.  Torpid mixing of simulated tempering on the Potts model , 2004, SODA '04.

[48]  S. Kou,et al.  Equi-energy sampler with applications in statistical inference and statistical mechanics , 2005, math/0507080.

[49]  Nayantara Bhatnagar,et al.  Annealing and tempering for sampling and counting , 2007 .

[50]  W. Wong,et al.  The Calculation of Posterior Distributions by MARTIN A . TANNER and , 2007 .

[51]  Stephen M. Krone,et al.  Small-world MCMC and convergence to multi-modal distributions: From slow mixing to fast mixing , 2007 .

[52]  D. Woodard,et al.  Sufficient Conditions for Torpid Mixing of Parallel and Simulated Tempering , 2009 .

[53]  D. Woodard,et al.  Conditions for Torpid Mixing of Parallel and Simulated Tempering on Multimodal Distributions , 2022 .