Retinal bipolar cells: elementary building blocks of vision

Retinal bipolar cells are the first 'projection neurons' of the vertebrate visual system — all of the information needed for vision is relayed by this intraretinal connection. Each of the at least 13 distinct types of bipolar cells systematically transforms the photoreceptor input in a different way, thereby generating specific channels that encode stimulus properties, such as polarity, contrast, temporal profile and chromatic composition. As a result, bipolar cell output signals represent elementary 'building blocks' from which the microcircuits of the inner retina derive a feature-oriented description of the visual world.

[1]  Sulla anatomia della retina , 1887 .

[2]  S. R. Y. Cajal La rétine des vertébrés , 1892 .

[3]  R. Dacheux,et al.  Intracellular chloride in retinal neurons: Measurement and meaning , 1983, Vision Research.

[4]  A. Mariani Bipolar cells in monkey retina selective for the cones likely to be blue-sensitive , 1984, Nature.

[5]  G. Matthews,et al.  Substance P modulates calcium current in retinal bipolar neurons , 1992, Visual Neuroscience.

[6]  S. Yazulla,et al.  Goldfish bipolar cells and axon terminal patterns: A Golgi study , 1993, The Journal of comparative neurology.

[7]  Paul R. Martin,et al.  Immunocytochemical characterization and spatial distribution of midget bipolar cells in the macaque monkey retina , 1994, Vision Research.

[8]  Daniel Johnston,et al.  Dendritic attenuation of synaptic potentials and currents: the role of passive membrane properties , 1994, Trends in Neurosciences.

[9]  Á. Szél,et al.  Two different visual pigments in one retinal cone cell , 1994, Neuron.

[10]  Tomomitsu Miyoshi,et al.  Specific deficit of the ON response in visual transmission by targeted disruption of the mGIuR6 gene , 1995, Cell.

[11]  Takashi Okada,et al.  Ca2+-dependent C− current at the presynaptic terminals of goldfish retinal bipolar cells , 1995, Neuroscience Research.

[12]  M. Tachibana,et al.  Ca(2+)-dependent Cl- current at the presynaptic terminals of goldfish retinal bipolar cells. , 1995, Neuroscience research.

[13]  H. Wässle,et al.  Glutamate Responses of Bipolar Cells in a Slice Preparation of the Rat Retina , 1996, The Journal of Neuroscience.

[14]  E. Hartveit,et al.  Functional organization of cone bipolar cells in the rat retina. , 1997, Journal of neurophysiology.

[15]  L. Lagnado,et al.  Electrical resonance and Ca2+ influx in the synaptic terminal of depolarizing bipolar cells from the Goldfish retina , 1997, The Journal of physiology.

[16]  G H Jacobs,et al.  The topography of rod and cone photoreceptors in the retina of the ground squirrel , 1998, Visual Neuroscience.

[17]  Idan Segev,et al.  Dendritic processing , 1998 .

[18]  Connaughton,et al.  Differential expression of voltage‐gated K+ and Ca2+ currents in bipolar cells in the zebrafish retinal slice , 1998, The European journal of neuroscience.

[19]  H. Wässle,et al.  Different contributions of GABAA and GABAC receptors to rod and cone bipolar cells in a rat retinal slice preparation. , 1998, Journal of neurophysiology.

[20]  L. Lagnado,et al.  The kinetics of exocytosis and endocytosis in the synaptic terminal of goldfish retinal bipolar cells , 1999, The Journal of physiology.

[21]  Leon Lagnado,et al.  The retina , 1999, Current Biology.

[22]  S. Haverkamp,et al.  Different types of synapses with different spectral types of cones underlie color opponency in a bipolar cell of the turtle retina , 1999, Visual Neuroscience.

[23]  L. Peichl,et al.  An alternative pathway for rod signals in the rodent retina: rod photoreceptors, cone bipolar cells, and the localization of glutamate receptors. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[24]  J. Nathans The Evolution and Physiology of Human Color Vision Insights from Molecular Genetic Studies of Visual Pigments , 1999, Neuron.

[25]  S. DeVries,et al.  Bipolar Cells Use Kainate and AMPA Receptors to Filter Visual Information into Separate Channels , 2000, Neuron.

[26]  Nicolas Flores-Herr,et al.  Light Evokes Ca2+ Spikes in the Axon Terminal of a Retinal Bipolar Cell , 2000, Neuron.

[27]  G. Awatramani,et al.  Origin of Transient and Sustained Responses in Ganglion Cells of the Retina , 2000, The Journal of Neuroscience.

[28]  P Sterling,et al.  Localization of mGluR6 to dendrites of ON bipolar cells in primate retina , 2000, The Journal of comparative neurology.

[29]  Heinz Wässle,et al.  The Cone Pedicle, a Complex Synapse in the Retina , 2000, Neuron.

[30]  P. Sterling,et al.  Evidence That Different Cation Chloride Cotransporters in Retinal Neurons Allow Opposite Responses to GABA , 2000, The Journal of Neuroscience.

[31]  R H Masland,et al.  Light-evoked responses of bipolar cells in a mammalian retina. , 2000, Journal of neurophysiology.

[32]  Thomas Euler,et al.  Dendritic processing , 2001, Current Opinion in Neurobiology.

[33]  Heinz Wässle,et al.  Localization of kainate receptors at the cone pedicles of the primate retina , 2001, The Journal of comparative neurology.

[34]  S. Bloomfield,et al.  Rod Vision: Pathways and Processing in the Mammalian Retina , 2001, Progress in Retinal and Eye Research.

[35]  F. Werblin,et al.  Vertical interactions across ten parallel, stacked representations in the mammalian retina , 2001, Nature.

[36]  P. Sterling,et al.  Microcircuits for Night Vision in Mouse Retina , 2001, The Journal of Neuroscience.

[37]  G. Awatramani,et al.  Intensity-Dependent, Rapid Activation of Presynaptic Metabotropic Glutamate Receptors at a Central Synapse , 2001, The Journal of Neuroscience.

[38]  Differential expression of K+ currents in mammalian retinal bipolar cells. , 2002, Visual neuroscience.

[39]  H. Kolb,et al.  The neurons of the ground squirrel retina as revealed by immunostains for calcium binding proteins and neurotransmitters , 2002, Journal of neurocytology.

[40]  M. Meister,et al.  Fast and Slow Contrast Adaptation in Retinal Circuitry , 2002, Neuron.

[41]  Wenzhi Sun,et al.  Large‐scale morphological survey of mouse retinal ganglion cells , 2002, The Journal of comparative neurology.

[42]  Expression of the neurokinin 1 receptor in the rabbit retina , 2002, Neuroscience.

[43]  A. Hendrickson,et al.  A comparison of immunocytochemical markers to identify bipolar cell types in human and monkey retina , 2003, Visual Neuroscience.

[44]  S. Haverkamp,et al.  HCN channels are expressed differentially in retinal bipolar cells and concentrated at synaptic terminals , 2003, The European journal of neuroscience.

[45]  B. Fyk-Kolodziej,et al.  Identification of a cone bipolar cell in cat retina which has input from both rod and cone photoreceptors , 2003, The Journal of comparative neurology.

[46]  W. Almers,et al.  Imaging Calcium Entry Sites and Ribbon Structures in Two Presynaptic Cells , 2003, The Journal of Neuroscience.

[47]  L. Lagnado,et al.  Exocytosis at the Ribbon Synapse of Retinal Bipolar Cells Studied in Patches of Presynaptic Membrane , 2003, The Journal of Neuroscience.

[48]  Ji-Jie Pang,et al.  Light-Evoked Excitatory and Inhibitory Synaptic Inputs to ON and OFF α Ganglion Cells in the Mouse Retina , 2003, The Journal of Neuroscience.

[49]  B. Völgyi,et al.  Convergence and Segregation of the Multiple Rod Pathways in Mammalian Retina , 2004, The Journal of Neuroscience.

[50]  E. Catalani,et al.  Expression of the neurokinin 1 receptor in the mouse retina , 2002, Neuroscience.

[51]  H. Wässle,et al.  Types of bipolar cells in the mouse retina , 2004, The Journal of comparative neurology.

[52]  Richard H Masland,et al.  The population of bipolar cells in the rabbit retina , 2004, The Journal of comparative neurology.

[53]  N. Vardi,et al.  Coordinated multivesicular release at a mammalian ribbon synapse , 2004, Nature Neuroscience.

[54]  R. Nelson,et al.  Identification and morphological classification of horizontal, bipolar, and amacrine cells within the zebrafish retina , 2004, The Journal of comparative neurology.

[55]  Ji-Jie Pang,et al.  Stratum‐by‐stratum projection of light response attributes by retinal bipolar cells of Ambystoma , 2004, The Journal of physiology.

[56]  H. Wässle,et al.  The Primordial, Blue-Cone Color System of the Mouse Retina , 2005, The Journal of Neuroscience.

[57]  L. Lagnado,et al.  Expansion of calcium microdomains regulates fast exocytosis at a ribbon synapse. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[58]  Nicholas Oesch,et al.  Direction-Selective Dendritic Action Potentials in Rabbit Retina , 2005, Neuron.

[59]  Bin Lin,et al.  Synaptic contacts between an identified type of ON cone bipolar cell and ganglion cells in the mouse retina , 2005, The European journal of neuroscience.

[60]  Alexander Borst,et al.  Heterogeneity in synaptic transmission along a Drosophila larval motor axon , 2005, Nature Neuroscience.

[61]  Robert F. Miller,et al.  A computational model of the ribbon synapse , 2005, Journal of Neuroscience Methods.

[62]  Kwoon Y. Wong,et al.  Retinal bipolar cell input mechanisms in giant danio. III. ON-OFF bipolar cells and their color-opponent mechanisms. , 2005, Journal of neurophysiology.

[63]  J. Brandstätter,et al.  Ribbon synapses of the retina , 2006, Cell and Tissue Research.

[64]  M. Palmer Modulation of Ca2+‐activated K+ currents and Ca2+‐dependent action potentials by exocytosis in goldfish bipolar cell terminals , 2006, The Journal of physiology.

[65]  W. R. Taylor,et al.  Local Edge Detectors: A Substrate for Fine Spatial Vision at Low Temporal Frequencies in Rabbit Retina , 2006, The Journal of Neuroscience.

[66]  J. B. Demb,et al.  Presynaptic Mechanism for Slow Contrast Adaptation in Mammalian Retinal Ganglion Cells , 2006, Neuron.

[67]  F. Rieke,et al.  The impact of photoreceptor noise on retinal gain controls , 2006, Current Opinion in Neurobiology.

[68]  Wei Li,et al.  Parallel Processing in Two Transmitter Microenvironments at the Cone Photoreceptor Synapse , 2006, Neuron.

[69]  E. Hartveit,et al.  Activation of a presynaptic glutamate transporter regulates synaptic transmission through electrical signaling , 2006, Nature Neuroscience.

[70]  Thomas Euler,et al.  Two-Photon Imaging Reveals Somatodendritic Chloride Gradient in Retinal ON-Type Bipolar Cells Expressing the Biosensor Clomeleon , 2006, Neuron.

[71]  S. DeVries,et al.  Bipolar cell pathways for color and luminance vision in a dichromatic mammalian retina , 2006, Nature Neuroscience.

[72]  Heinz Wässle,et al.  Characterization of the glycinergic input to bipolar cells of the mouse retina , 2006, The European journal of neuroscience.

[73]  S. Haverkamp,et al.  OFF midget bipolar cells in the retina of the marmoset, Callithrix jacchus, express AMPA receptors , 2007, The Journal of comparative neurology.

[74]  F. Müller,et al.  Type 3a and type 3b OFF cone bipolar cells provide for the alternative rod pathway in the mouse retina , 2007, The Journal of comparative neurology.

[75]  P. Detwiler,et al.  A Dendrite-Autonomous Mechanism for Direction Selectivity in Retinal Starburst Amacrine Cells , 2007, PLoS biology.

[76]  Erika D Eggers,et al.  Presynaptic inhibition differentially shapes transmission in distinct circuits in the mouse retina , 2007, The Journal of physiology.

[77]  Ken Berglund,et al.  Different roles of ribbon-associated and ribbon-free active zones in retinal bipolar cells , 2007, Nature Neuroscience.

[78]  U. Grünert,et al.  Connections of diffuse bipolar cells in primate retina are biased against S‐cones , 2007, The Journal of comparative neurology.

[79]  H. Wässle,et al.  Type 4 OFF cone bipolar cells of the mouse retina express calsenilin and contact cones as well as rods , 2008, The Journal of comparative neurology.

[80]  Robert G. Smith,et al.  Retinal ON Bipolar Cells Express a New PCP2 Splice Variant That Accelerates the Light Response , 2008, The Journal of Neuroscience.

[81]  J. Lichtman,et al.  Development of presynaptic inhibition onto retinal bipolar cell axon terminals is subclass-specific. , 2008, Journal of neurophysiology.

[82]  Zhuo-Hua Pan,et al.  Two types of cone bipolar cells express voltage-gated Na+ channels in the rat retina , 2008, Visual Neuroscience.

[83]  Haruhisa Okawa,et al.  Targeting of RGS7/Gβ5 to the Dendritic Tips of ON-Bipolar Cells Is Independent of Its Association with Membrane Anchor R7BP , 2008, Journal of Neuroscience.

[84]  J. Sanes,et al.  Molecular identification of a retinal cell type that responds to upward motion , 2008, Nature.

[85]  Haruhisa Okawa,et al.  Retina-Specific GTPase Accelerator RGS11/Gβ5S/R9AP Is a Constitutive Heterotrimer Selectively Targeted to mGluR6 in ON-Bipolar Neurons , 2009, The Journal of Neuroscience.

[86]  Leon Lagnado,et al.  A genetically-encoded reporter of synaptic activity in vivo , 2009, Nature Methods.

[87]  G. Matthews,et al.  The Role of Ribbons at Sensory Synapses , 2009, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[88]  B. Völgyi,et al.  Tracer coupling patterns of the ganglion cell subtypes in the mouse retina , 2009, The Journal of comparative neurology.

[89]  R. Duvoisin,et al.  TRPM1 is required for the depolarizing light response in retinal ON-bipolar cells , 2009, Proceedings of the National Academy of Sciences.

[90]  Skyler L Jackman,et al.  Role of the synaptic ribbon in transmitting the cone light response , 2009, Nature Neuroscience.

[91]  M. Tachibana,et al.  TRPM1 is a component of the retinal ON bipolar cell transduction channel in the mGluR6 cascade , 2009, Proceedings of the National Academy of Sciences of the United States of America.

[92]  H. Wässle,et al.  Cone Contacts, Mosaics, and Territories of Bipolar Cells in the Mouse Retina , 2009, The Journal of Neuroscience.

[93]  S. Haverkamp,et al.  Bipolar cell pathways for color vision in non-primate dichromats , 2010, Visual Neuroscience.

[94]  S. DeVries,et al.  A fast rod photoreceptor signaling pathway in the mammalian retina , 2010, Nature Neuroscience.

[95]  T. Baden,et al.  Primary Afferent Depolarization and Frequency Processing in Auditory Afferents , 2010, The Journal of Neuroscience.

[96]  Hannah R. Joo,et al.  Characterization of a novel large-field cone bipolar cell type in the primate retina: Evidence for selective cone connections , 2010, Visual Neuroscience.

[97]  V. Connaughton Bipolar cells in the zebrafish retina , 2010, Visual Neuroscience.

[98]  Timothy A. Machado,et al.  Functional connectivity in the retina at the resolution of photoreceptors , 2010, Nature.

[99]  Tim Gollisch,et al.  Eye Smarter than Scientists Believed: Neural Computations in Circuits of the Retina , 2010, Neuron.

[100]  R. Duvoisin,et al.  R9AP stabilizes RGS11-Gβ5 and accelerates the early light response of ON-bipolar cells , 2010, Visual Neuroscience.

[101]  N. Vardi,et al.  Ret‐PCP2 colocalizes with protein kinase C in a subset of primate ON cone bipolar cells , 2010, The Journal of comparative neurology.

[102]  Michael J. Schachter,et al.  Dendritic Spikes Amplify the Synaptic Signal to Enhance Detection of Motion in a Simulation of the Direction-Selective Ganglion Cell , 2010, PLoS Comput. Biol..

[103]  Hiroshi Ueda,et al.  TRPM1: a vertebrate TRP channel responsible for retinal ON bipolar function. , 2010, Cell calcium.

[104]  Kevin L. Briggman,et al.  Wiring specificity in the direction-selectivity circuit of the retina , 2011, Nature.

[105]  F. Esposti,et al.  Spikes in Retinal Bipolar Cells Phase-Lock to Visual Stimuli with Millisecond Precision , 2011, Current Biology.

[106]  Jared C. Gilliam,et al.  TRP channel gene expression in the mouse retina , 2011, Vision Research.

[107]  WR Taylor,et al.  Trigger features and excitation in the retina , 2011, Current Opinion in Neurobiology.

[108]  S. Nawy,et al.  Relief of Mg2+-Dependent Inhibition of TRPM1 by PKCα at the Rod Bipolar Cell Synapse , 2011, The Journal of Neuroscience.

[109]  S. Haverkamp,et al.  Bipolar cells of the ground squirrel retina , 2011, The Journal of comparative neurology.

[110]  Tobias Breuninger,et al.  Chromatic Bipolar Cell Pathways in the Mouse Retina , 2011, The Journal of Neuroscience.

[111]  Jay Neitz,et al.  The genetics of normal and defective color vision , 2011, Vision Research.

[112]  S. Haverkamp,et al.  Immunohistochemical identification and synaptic inputs to the diffuse bipolar cell type DB1 in macaque retina , 2011, The Journal of comparative neurology.

[113]  H. von Gersdorff,et al.  Light-Evoked Lateral GABAergic Inhibition at Single Bipolar Cell Synaptic Terminals Is Driven by Distinct Retinal Microcircuits , 2011, The Journal of Neuroscience.

[114]  S. Nawy,et al.  A Role for Nyctalopin, a Small Leucine-Rich Repeat Protein, in Localizing the TRP Melastatin 1 Channel to Retinal Depolarizing Bipolar Cell Dendrites , 2011, The Journal of Neuroscience.

[115]  A. Borst,et al.  Seeing Things in Motion: Models, Circuits, and Mechanisms , 2011, Neuron.

[116]  R. Wong,et al.  Supplemental Information Development of Cell Type-Specific Connectivity Patterns of Converging Excitatory Axons in the Retina , 2011 .

[117]  M. Meister,et al.  Divergence of visual channels in the inner retina , 2012, Nature Neuroscience.

[118]  Tim Gollisch,et al.  Closed-Loop Measurements of Iso-Response Stimuli Reveal Dynamic Nonlinear Stimulus Integration in the Retina , 2012, Neuron.

[119]  Wallace B. Thoreson,et al.  Lateral interactions in the outer retina , 2012, Progress in Retinal and Eye Research.

[120]  J. Dowling,et al.  Bipolar cell–photoreceptor connectivity in the zebrafish (Danio rerio) retina , 2012, The Journal of comparative neurology.

[121]  R. Masland The tasks of amacrine cells , 2012, Visual Neuroscience.

[122]  R. Masland The Neuronal Organization of the Retina , 2012, Neuron.

[123]  L. Lagnado,et al.  Encoding of Luminance and Contrast by Linear and Nonlinear Synapses in the Retina , 2012, Neuron.

[124]  S. Baccus,et al.  Linking the Computational Structure of Variance Adaptation to Biophysical Mechanisms , 2012, Neuron.

[125]  S. DeVries,et al.  Organizational motifs for ground squirrel cone bipolar cells , 2012, The Journal of comparative neurology.

[126]  Shannon Saszik,et al.  A Mammalian Retinal Bipolar Cell Uses Both Graded Changes in Membrane Voltage and All-or-Nothing Na+ Spikes to Encode Light , 2012, The Journal of Neuroscience.

[127]  Shansup Chen,et al.  A color coding amacrine cell may provide a “Blue–Off” signal in a mammalian retina , 2012, Nature Neuroscience.

[128]  R. Wong,et al.  Diverse Strategies Engaged in Establishing Stereotypic Wiring Patterns among Neurons Sharing a Common Input at the Visual System's First Synapse , 2012, The Journal of Neuroscience.

[129]  J. Sanes,et al.  The most numerous ganglion cell type of the mouse retina is a selective feature detector , 2012, Proceedings of the National Academy of Sciences.

[130]  Fred Rieke,et al.  The spatial structure of a nonlinear receptive field , 2012, Nature Neuroscience.

[131]  J. Brandstätter,et al.  Structure and function of a complex sensory synapse , 2012, Acta physiologica.

[132]  N. Kamasawa,et al.  Regulators of G protein signaling RGS7 and RGS11 determine the onset of the light response in ON bipolar neurons , 2012, Proceedings of the National Academy of Sciences.

[133]  W. Taylor,et al.  NaV1.1 Channels in Axon Initial Segments of Bipolar Cells Augment Input to Magnocellular Visual Pathways in the Primate Retina , 2013, The Journal of Neuroscience.

[134]  S. Haverkamp,et al.  Characterization of small‐field bistratified amacrine cells in macaque retina labeled by antibodies against synaptotagmin‐2 , 2013, The Journal of comparative neurology.

[135]  N. Vardi,et al.  Kir2.4 Surface Expression and Basal Current Are Affected by Heterotrimeric G-Proteins* , 2013, The Journal of Biological Chemistry.

[136]  Guo-yong Wang,et al.  Dopamine modulates the off pathway in light‐adapted mouse retina , 2012, Journal of neuroscience research.

[137]  Thomas Euler,et al.  A Tale of Two Retinal Domains: Near-Optimal Sampling of Achromatic Contrasts in Natural Scenes through Asymmetric Photoreceptor Distribution , 2013, Neuron.

[138]  Botond Roska,et al.  The First Stage of Cardinal Direction Selectivity Is Localized to the Dendrites of Retinal Ganglion Cells , 2013, Neuron.

[139]  J. Marvin,et al.  Two-Photon Imaging of Nonlinear Glutamate Release Dynamics at Bipolar Cell Synapses in the Mouse Retina , 2013, The Journal of Neuroscience.

[140]  Thomas Euler,et al.  Early Vision: Where (Some of) the Magic Happens , 2013, Current Biology.

[141]  F. Esposti,et al.  Olfactory Stimulation Selectively Modulates the OFF Pathway in the Retina of Zebrafish , 2013, Neuron.

[142]  M. Bethge,et al.  Spikes in Mammalian Bipolar Cells Support Temporal Layering of the Inner Retina , 2013, Current Biology.

[143]  Jamey S. Kain,et al.  Asymmetric neurotransmitter release enables rapid odor lateralization in Drosophila , 2012, Nature.

[144]  Thomas Euler,et al.  OFF bipolar cells express distinct types of dendritic glutamate receptors in the mouse retina , 2013, Neuroscience.

[145]  D. Dacey,et al.  Distinct synaptic mechanisms create parallel S-ON and S-OFF color opponent pathways in the primate retina , 2013, Visual Neuroscience.

[146]  Melissa M. Reynolds,et al.  Nitric Oxide Mediates Activity-Dependent Plasticity of Retinal Bipolar Cell Output via S-Nitrosylation , 2013, The Journal of Neuroscience.

[147]  L. Lagnado,et al.  Synaptic mechanisms of adaptation and sensitization in the retina , 2013, Nature Neuroscience.

[148]  Srinivas C. Turaga,et al.  Connectomic reconstruction of the inner plexiform layer in the mouse retina , 2013, Nature.

[149]  Tim Gollisch,et al.  Local and Global Contrast Adaptation in Retinal Ganglion Cells , 2013, Neuron.

[150]  Mark T. Harnett,et al.  An optimized fluorescent probe for visualizing glutamate neurotransmission , 2013, Nature Methods.

[151]  Thomas Euler,et al.  Spikes and ribbon synapses in early vision , 2013, Trends in Neurosciences.

[152]  Y. Tsukamoto,et al.  Functional allocation of synaptic contacts in microcircuits from rods via rod bipolar to AII amacrine cells in the mouse retina , 2013, The Journal of comparative neurology.

[153]  N. Brecha,et al.  Expression of voltage‐gated calcium channel α2δ4 subunits in the mouse and rat retina , 2013, The Journal of comparative neurology.

[154]  Benjamin Sivyer,et al.  Direction selectivity is computed by active dendritic integration in retinal ganglion cells , 2013, Nature Neuroscience.

[155]  Srinivas C. Turaga,et al.  Space-time wiring specificity supports direction selectivity in the retina , 2014, Nature.

[156]  Sen Song,et al.  A genetic and computational approach to structurally classify neuronal types , 2014, Nature Communications.

[157]  R. Vagnozzi,et al.  Orientation of actin filaments in teleost retinal pigment epithelial cells, and the effect of the lectin, Concanavalin A, on melanosome motility , 2014, Visual Neuroscience.

[158]  M. McCall,et al.  GPR179 Is Required for High Sensitivity of the mGluR6 Signaling Cascade in Depolarizing Bipolar Cells , 2014, The Journal of Neuroscience.

[159]  Ian Gee,et al.  Measurement and Meaning , 2014 .

[160]  B. Borghuis,et al.  Kainate Receptors Mediate Signaling in Both Transient and Sustained OFF Bipolar Cell Pathways in Mouse Retina , 2014, The Journal of Neuroscience.

[161]  T. Ichinose,et al.  Roles of ON Cone Bipolar Cell Subtypes in Temporal Coding in the Mouse Retina , 2014, The Journal of Neuroscience.

[162]  Adam Bleckert,et al.  Visual Space Is Represented by Nonmatching Topographies of Distinct Mouse Retinal Ganglion Cell Types , 2014, Current Biology.

[163]  S. DeVries,et al.  Kainate receptor subunit diversity underlying response diversity in retinal Off bipolar cells , 2014, The Journal of physiology.

[164]  S. Massey,et al.  Three Distinct Blue-Green Color Pathways in a Mammalian Retina , 2014, The Journal of Neuroscience.

[165]  Hiroki Asari,et al.  The Projective Field of Retinal Bipolar Cells and Its Modulation by Visual Context , 2014, Neuron.