MNDO-like Semiempirical Molecular Orbital Theory and its application to large Systems

[1]  S. L. Dixon,et al.  Linear scaling molecular orbital calculations of biological systems using the semiempirical divide and conquer method , 2000, J. Comput. Chem..

[2]  Timothy Clark,et al.  AM1* parameters for cobalt and nickel , 2010, Journal of molecular modeling.

[3]  J. Murray,et al.  Statistical analysis of the molecular surface electrostatic potential: an approach to describing noncovalent interactions in condensed phases , 1998 .

[4]  L. Oleari,et al.  The evaluation of the one-centre integrals in the semi-empirical molecular orbital theory , 1966 .

[5]  James J P Stewart,et al.  Optimization of parameters for semiempirical methods IV: extension of MNDO, AM1, and PM3 to more main group elements , 2004, Journal of molecular modeling.

[6]  Implementation of an NDDO/CI/SOS approach for second-order hyperpolarizabilities , 2000 .

[7]  Anselm H. C. Horn,et al.  Multipole electrostatic model for MNDO-like techniques with minimal valence spd-basis sets , 2005 .

[8]  E. Schrödinger An Undulatory Theory of the Mechanics of Atoms and Molecules , 1926 .

[9]  Michael C. Zerner,et al.  An intermediate neglect of differential overlap technique for spectroscopy: Pyrrole and the azines , 1973 .

[10]  F. London,et al.  Über das Verhältnis der van der Waalsschen Kräfte zu den homöopolaren Bindungskräften , 1930 .

[11]  H. Hofmann,et al.  Description of peptide and protein secondary structures employing semiempirical methods , 2001, J. Comput. Chem..

[12]  Jianguo Yu,et al.  SAM1; The first of a new series of general purpose quantum mechanical molecular models , 1993 .

[13]  Jirí Cerný,et al.  Density functional theory augmented with an empirical dispersion term. Interaction energies and geometries of 80 noncovalent complexes compared with ab initio quantum mechanics calculations , 2007, J. Comput. Chem..

[14]  M. Dewar,et al.  Ground states of .sigma.-bonded molecules. XVII. Fluorine compounds , 1972 .

[15]  J. Chandrasekhar,et al.  NDDO-based CI methods for the prediction of electronic spectra and sum-over-states molecular hyperpolarization , 1993 .

[16]  Bernd Beck,et al.  Enhanced 3D-Databases: A Fully Electrostatic Database of AM1-Optimized Structures , 1998, J. Chem. Inf. Comput. Sci..

[17]  William L. Jorgensen,et al.  NO-MNDO:  Reintroduction of the Overlap Matrix into MNDO. , 2006, Journal of chemical theory and computation.

[18]  Walter Thiel,et al.  Extension of MNDO to d Orbitals: Parameters and Results for the Second-Row Elements and for the Zinc Group , 1996 .

[19]  Notker Rösch,et al.  AM1/d Parameters for Molybdenum , 2000 .

[20]  Walter Thiel,et al.  Extension of MNDO to d Orbitals: Parameters and Results for the Halogens , 1992 .

[21]  Bodo Martin,et al.  Additive NDDO-based atomic polarizability model , 2000 .

[22]  S. Schneider,et al.  Simulating FRET from tryptophan: is the rotamer model correct? , 2006, Journal of the American Chemical Society.

[23]  J. Stewart Optimization of parameters for semiempirical methods II. Applications , 1989 .

[24]  R. Hochstrasser,et al.  Fluorescence lifetime distribution of single molecules undergoing Förster energy transfer , 2001 .

[25]  James J. P. Stewart,et al.  Application of localized molecular orbitals to the solution of semiempirical self‐consistent field equations , 1996 .

[26]  Walter Thiel,et al.  Implementation of a general multireference configuration interaction procedure with analytic gradients in a semiempirical context using the graphical unitary group approach , 2003, J. Comput. Chem..

[27]  I. H. Hillier,et al.  Semi-empirical molecular orbital methods including dispersion corrections for the accurate prediction of the full range of intermolecular interactions in biomolecules. , 2007, Physical chemistry chemical physics : PCCP.

[28]  Walter Thiel,et al.  Orthogonalization corrections for semiempirical methods , 2000 .

[29]  Michael J. S. Dewar,et al.  Ground states of molecules. XXV. MINDO/3. Improved version of the MINDO semiempirical SCF-MO method , 1975 .

[30]  Alfredo Mayall Simas,et al.  RM1: A reparameterization of AM1 for H, C, N, O, P, S, F, Cl, Br, and I , 2006, J. Comput. Chem..

[31]  Thomas Frauenheim,et al.  Hydrogen bonding and stacking interactions of nucleic acid base pairs: A density-functional-theory based treatment , 2001 .

[32]  J. Stewart Optimization of parameters for semiempirical methods V: Modification of NDDO approximations and application to 70 elements , 2007, Journal of molecular modeling.

[33]  James J. P. Stewart,et al.  Fast semiempirical calculations , 1982 .

[34]  Timothy Clark,et al.  AM1* parameters for copper and zinc , 2007, Journal of molecular modeling.

[35]  J. Stewart Optimization of parameters for semiempirical methods I. Method , 1989 .

[36]  Bodo Martin,et al.  Dispersion treatment for NDDO‐based semiempirical MO techniques , 2006 .

[37]  J. Griffiths Practical aspects of colour prediction of organic dye molecules , 1982 .

[38]  János G. Ángyán,et al.  The origin of the problems with the PM3 core repulsion function , 1997 .

[39]  Walter Thiel,et al.  Extension of MNDO to d orbitals: parameters and results for silicon , 1994 .

[40]  J. Černý,et al.  Resolution of identity density functional theory augmented with an empirical dispersion term (RI-DFT-D): a promising tool for studying isolated small peptides. , 2007, The journal of physical chemistry. A.

[41]  Timothy Clark,et al.  AM1* parameters for bromine and iodine , 2009, Journal of molecular modeling.

[42]  Anselm H. C. Horn,et al.  AM1* parameters for phosphorus, sulfur and chlorine , 2003, Journal of molecular modeling.

[43]  Daniel Rinaldi,et al.  Polarisabilites moléculaires et effet diélectrique de milieu à l'état liquide. Étude théorique de la molécule d'eau et de ses diméres , 1973 .

[44]  Kenneth M Merz,et al.  Assessment of Semiempirical Quantum Mechanical Methods for the Evaluation of Protein Structures. , 2007, Journal of chemical theory and computation.

[45]  Timothy Clark,et al.  Towards a ‘‘next generation’’ neglect of diatomic differential overlap based semiempirical molecular orbital technique , 2003 .

[46]  S. L. Dixon,et al.  Fast, accurate semiempirical molecular orbital calculations for macromolecules , 1997 .

[47]  John C. Slater,et al.  The Theory of Complex Spectra , 1929 .

[48]  Peter Politzer,et al.  σ-hole bonding between like atoms; a fallacy of atomic charges , 2008, Journal of molecular modeling.

[49]  J. Pople,et al.  Approximate Self-Consistent Molecular Orbital Theory. I. Invariant Procedures , 1965 .

[50]  Walter Thiel,et al.  OMx-D: semiempirical methods with orthogonalization and dispersion corrections. Implementation and biochemical application. , 2008, Physical chemistry chemical physics : PCCP.

[51]  Michael C. Zerner,et al.  Semiempirical Molecular Orbital Methods , 2007 .

[52]  Eamonn F. Healy,et al.  Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model , 1985 .

[53]  Giacinto Scoles,et al.  Intermolecular forces in simple systems , 1977 .

[54]  G. Klopman,et al.  A semiempirical treatment of molecular structures. II. Molecular terms and application to diatomic molecules , 1964 .

[55]  K. Schulten,et al.  Electronic Excitations in Aggregates of Bacteriochlorophylls , 1998 .

[56]  J. Stewart Optimization of parameters for semiempirical methods. III Extension of PM3 to Be, Mg, Zn, Ga, Ge, As, Se, Cd, In, Sn, Sb, Te, Hg, Tl, Pb, and Bi , 1991 .

[57]  A. Isaev,et al.  MNDO calculations on hydrogen bonds. Modified function for core-core repulsion , 1984 .

[58]  Timothy Clark,et al.  AM1* parameters for aluminum, silicon, titanium and zirconium , 2005, Journal of molecular modeling.

[59]  Jindřich Fanfrlík,et al.  Semiempirical Quantum Chemical PM6 Method Augmented by Dispersion and H-Bonding Correction Terms Reliably Describes Various Types of Noncovalent Complexes. , 2009, Journal of chemical theory and computation.

[60]  V. Fock,et al.  Näherungsmethode zur Lösung des quantenmechanischen Mehrkörperproblems , 1930 .

[61]  Walter Thiel,et al.  Ground States of Molecules. 39. MNDO Results for Molecules Containing Hydrogen, Carbon, Nitrogen, and Oxygen , 1977 .

[62]  Kenneth M. Merz,et al.  Fully Quantum Mechanical Description of Proteins in Solution. Combining Linear Scaling Quantum Mechanical Methodologies with the Poisson−Boltzmann Equation , 1999 .

[63]  J. Pople,et al.  Approximate Self‐Consistent Molecular‐Orbital Theory. V. Intermediate Neglect of Differential Overlap , 1967 .

[64]  G. Schürer,et al.  Accurate parametrized variational calculations of the molecular electronic polarizability by NDDO‐based methods , 1999 .

[65]  James J. P. Stewart,et al.  Application of the PM6 method to modeling proteins , 2009, Journal of molecular modeling.

[66]  William L. Jorgensen,et al.  PDDG/PM3 and PDDG/MNDO: Improved semiempirical methods , 2002, J. Comput. Chem..

[67]  D. Hartree The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part I. Theory and Methods , 1928, Mathematical Proceedings of the Cambridge Philosophical Society.

[68]  Stefan Grimme,et al.  Accurate description of van der Waals complexes by density functional theory including empirical corrections , 2004, J. Comput. Chem..

[69]  Walter Thiel,et al.  Ground States of Molecules. 38. The MNDO Method. Approximations and Parameters , 1977 .

[70]  Leonard M. Isaacson,et al.  Quantum-Mechanical Calculation of One-Electron Properties. I. General Formulation , 1958 .

[71]  F. Allen The Cambridge Structural Database: a quarter of a million crystal structures and rising. , 2002, Acta crystallographica. Section B, Structural science.

[72]  Yang,et al.  Direct calculation of electron density in density-functional theory. , 1991, Physical review letters.

[73]  Monitoring biological membrane-potential changes: a CI QM/MM study. , 2008, The journal of physical chemistry. B.

[74]  E. Hückel,et al.  Quanstentheoretische Beiträge zum Benzolproblem , 1931 .

[75]  W. Pauli,et al.  Über den Zusammenhang des Abschlusses der Elektronengruppen im Atom mit der Komplexstruktur der Spektren , 1925 .

[76]  Timothy Clark,et al.  AM1* parameters for vanadium and chromium , 2009, Journal of molecular modeling.

[77]  Henry S. Rzepa,et al.  A global resource for computational chemistry , 2005, Journal of molecular modeling.

[78]  J. Pople,et al.  Self‐Consistent Molecular‐Orbital Methods. IX. An Extended Gaussian‐Type Basis for Molecular‐Orbital Studies of Organic Molecules , 1971 .

[79]  Walter Thiel,et al.  Beyond the MNDO model: Methodical considerations and numerical results , 1993, J. Comput. Chem..

[80]  W. Heisenberg,et al.  Zur Quantentheorie der Molekeln , 1924 .

[81]  Kenneth M Merz,et al.  Interaction energy decomposition in protein-protein association: a quantum mechanical study of barnase-barstar complex. , 2007, Biophysical chemistry.

[82]  Jirí Cerný,et al.  Benchmark database of accurate (MP2 and CCSD(T) complete basis set limit) interaction energies of small model complexes, DNA base pairs, and amino acid pairs. , 2006, Physical chemistry chemical physics : PCCP.