MNDO-like Semiempirical Molecular Orbital Theory and its application to large Systems
暂无分享,去创建一个
[1] S. L. Dixon,et al. Linear scaling molecular orbital calculations of biological systems using the semiempirical divide and conquer method , 2000, J. Comput. Chem..
[2] Timothy Clark,et al. AM1* parameters for cobalt and nickel , 2010, Journal of molecular modeling.
[3] J. Murray,et al. Statistical analysis of the molecular surface electrostatic potential: an approach to describing noncovalent interactions in condensed phases , 1998 .
[4] L. Oleari,et al. The evaluation of the one-centre integrals in the semi-empirical molecular orbital theory , 1966 .
[5] James J P Stewart,et al. Optimization of parameters for semiempirical methods IV: extension of MNDO, AM1, and PM3 to more main group elements , 2004, Journal of molecular modeling.
[6] Implementation of an NDDO/CI/SOS approach for second-order hyperpolarizabilities , 2000 .
[7] Anselm H. C. Horn,et al. Multipole electrostatic model for MNDO-like techniques with minimal valence spd-basis sets , 2005 .
[8] E. Schrödinger. An Undulatory Theory of the Mechanics of Atoms and Molecules , 1926 .
[9] Michael C. Zerner,et al. An intermediate neglect of differential overlap technique for spectroscopy: Pyrrole and the azines , 1973 .
[10] F. London,et al. Über das Verhältnis der van der Waalsschen Kräfte zu den homöopolaren Bindungskräften , 1930 .
[11] H. Hofmann,et al. Description of peptide and protein secondary structures employing semiempirical methods , 2001, J. Comput. Chem..
[12] Jianguo Yu,et al. SAM1; The first of a new series of general purpose quantum mechanical molecular models , 1993 .
[13] Jirí Cerný,et al. Density functional theory augmented with an empirical dispersion term. Interaction energies and geometries of 80 noncovalent complexes compared with ab initio quantum mechanics calculations , 2007, J. Comput. Chem..
[14] M. Dewar,et al. Ground states of .sigma.-bonded molecules. XVII. Fluorine compounds , 1972 .
[15] J. Chandrasekhar,et al. NDDO-based CI methods for the prediction of electronic spectra and sum-over-states molecular hyperpolarization , 1993 .
[16] Bernd Beck,et al. Enhanced 3D-Databases: A Fully Electrostatic Database of AM1-Optimized Structures , 1998, J. Chem. Inf. Comput. Sci..
[17] William L. Jorgensen,et al. NO-MNDO: Reintroduction of the Overlap Matrix into MNDO. , 2006, Journal of chemical theory and computation.
[18] Walter Thiel,et al. Extension of MNDO to d Orbitals: Parameters and Results for the Second-Row Elements and for the Zinc Group , 1996 .
[19] Notker Rösch,et al. AM1/d Parameters for Molybdenum , 2000 .
[20] Walter Thiel,et al. Extension of MNDO to d Orbitals: Parameters and Results for the Halogens , 1992 .
[21] Bodo Martin,et al. Additive NDDO-based atomic polarizability model , 2000 .
[22] S. Schneider,et al. Simulating FRET from tryptophan: is the rotamer model correct? , 2006, Journal of the American Chemical Society.
[23] J. Stewart. Optimization of parameters for semiempirical methods II. Applications , 1989 .
[24] R. Hochstrasser,et al. Fluorescence lifetime distribution of single molecules undergoing Förster energy transfer , 2001 .
[25] James J. P. Stewart,et al. Application of localized molecular orbitals to the solution of semiempirical self‐consistent field equations , 1996 .
[26] Walter Thiel,et al. Implementation of a general multireference configuration interaction procedure with analytic gradients in a semiempirical context using the graphical unitary group approach , 2003, J. Comput. Chem..
[27] I. H. Hillier,et al. Semi-empirical molecular orbital methods including dispersion corrections for the accurate prediction of the full range of intermolecular interactions in biomolecules. , 2007, Physical chemistry chemical physics : PCCP.
[28] Walter Thiel,et al. Orthogonalization corrections for semiempirical methods , 2000 .
[29] Michael J. S. Dewar,et al. Ground states of molecules. XXV. MINDO/3. Improved version of the MINDO semiempirical SCF-MO method , 1975 .
[30] Alfredo Mayall Simas,et al. RM1: A reparameterization of AM1 for H, C, N, O, P, S, F, Cl, Br, and I , 2006, J. Comput. Chem..
[31] Thomas Frauenheim,et al. Hydrogen bonding and stacking interactions of nucleic acid base pairs: A density-functional-theory based treatment , 2001 .
[32] J. Stewart. Optimization of parameters for semiempirical methods V: Modification of NDDO approximations and application to 70 elements , 2007, Journal of molecular modeling.
[33] James J. P. Stewart,et al. Fast semiempirical calculations , 1982 .
[34] Timothy Clark,et al. AM1* parameters for copper and zinc , 2007, Journal of molecular modeling.
[35] J. Stewart. Optimization of parameters for semiempirical methods I. Method , 1989 .
[36] Bodo Martin,et al. Dispersion treatment for NDDO‐based semiempirical MO techniques , 2006 .
[37] J. Griffiths. Practical aspects of colour prediction of organic dye molecules , 1982 .
[38] János G. Ángyán,et al. The origin of the problems with the PM3 core repulsion function , 1997 .
[39] Walter Thiel,et al. Extension of MNDO to d orbitals: parameters and results for silicon , 1994 .
[40] J. Černý,et al. Resolution of identity density functional theory augmented with an empirical dispersion term (RI-DFT-D): a promising tool for studying isolated small peptides. , 2007, The journal of physical chemistry. A.
[41] Timothy Clark,et al. AM1* parameters for bromine and iodine , 2009, Journal of molecular modeling.
[42] Anselm H. C. Horn,et al. AM1* parameters for phosphorus, sulfur and chlorine , 2003, Journal of molecular modeling.
[43] Daniel Rinaldi,et al. Polarisabilites moléculaires et effet diélectrique de milieu à l'état liquide. Étude théorique de la molécule d'eau et de ses diméres , 1973 .
[44] Kenneth M Merz,et al. Assessment of Semiempirical Quantum Mechanical Methods for the Evaluation of Protein Structures. , 2007, Journal of chemical theory and computation.
[45] Timothy Clark,et al. Towards a ‘‘next generation’’ neglect of diatomic differential overlap based semiempirical molecular orbital technique , 2003 .
[46] S. L. Dixon,et al. Fast, accurate semiempirical molecular orbital calculations for macromolecules , 1997 .
[47] John C. Slater,et al. The Theory of Complex Spectra , 1929 .
[48] Peter Politzer,et al. σ-hole bonding between like atoms; a fallacy of atomic charges , 2008, Journal of molecular modeling.
[49] J. Pople,et al. Approximate Self-Consistent Molecular Orbital Theory. I. Invariant Procedures , 1965 .
[50] Walter Thiel,et al. OMx-D: semiempirical methods with orthogonalization and dispersion corrections. Implementation and biochemical application. , 2008, Physical chemistry chemical physics : PCCP.
[51] Michael C. Zerner,et al. Semiempirical Molecular Orbital Methods , 2007 .
[52] Eamonn F. Healy,et al. Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model , 1985 .
[53] Giacinto Scoles,et al. Intermolecular forces in simple systems , 1977 .
[54] G. Klopman,et al. A semiempirical treatment of molecular structures. II. Molecular terms and application to diatomic molecules , 1964 .
[55] K. Schulten,et al. Electronic Excitations in Aggregates of Bacteriochlorophylls , 1998 .
[56] J. Stewart. Optimization of parameters for semiempirical methods. III Extension of PM3 to Be, Mg, Zn, Ga, Ge, As, Se, Cd, In, Sn, Sb, Te, Hg, Tl, Pb, and Bi , 1991 .
[57] A. Isaev,et al. MNDO calculations on hydrogen bonds. Modified function for core-core repulsion , 1984 .
[58] Timothy Clark,et al. AM1* parameters for aluminum, silicon, titanium and zirconium , 2005, Journal of molecular modeling.
[59] Jindřich Fanfrlík,et al. Semiempirical Quantum Chemical PM6 Method Augmented by Dispersion and H-Bonding Correction Terms Reliably Describes Various Types of Noncovalent Complexes. , 2009, Journal of chemical theory and computation.
[60] V. Fock,et al. Näherungsmethode zur Lösung des quantenmechanischen Mehrkörperproblems , 1930 .
[61] Walter Thiel,et al. Ground States of Molecules. 39. MNDO Results for Molecules Containing Hydrogen, Carbon, Nitrogen, and Oxygen , 1977 .
[62] Kenneth M. Merz,et al. Fully Quantum Mechanical Description of Proteins in Solution. Combining Linear Scaling Quantum Mechanical Methodologies with the Poisson−Boltzmann Equation , 1999 .
[63] J. Pople,et al. Approximate Self‐Consistent Molecular‐Orbital Theory. V. Intermediate Neglect of Differential Overlap , 1967 .
[64] G. Schürer,et al. Accurate parametrized variational calculations of the molecular electronic polarizability by NDDO‐based methods , 1999 .
[65] James J. P. Stewart,et al. Application of the PM6 method to modeling proteins , 2009, Journal of molecular modeling.
[66] William L. Jorgensen,et al. PDDG/PM3 and PDDG/MNDO: Improved semiempirical methods , 2002, J. Comput. Chem..
[67] D. Hartree. The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part I. Theory and Methods , 1928, Mathematical Proceedings of the Cambridge Philosophical Society.
[68] Stefan Grimme,et al. Accurate description of van der Waals complexes by density functional theory including empirical corrections , 2004, J. Comput. Chem..
[69] Walter Thiel,et al. Ground States of Molecules. 38. The MNDO Method. Approximations and Parameters , 1977 .
[70] Leonard M. Isaacson,et al. Quantum-Mechanical Calculation of One-Electron Properties. I. General Formulation , 1958 .
[71] F. Allen. The Cambridge Structural Database: a quarter of a million crystal structures and rising. , 2002, Acta crystallographica. Section B, Structural science.
[72] Yang,et al. Direct calculation of electron density in density-functional theory. , 1991, Physical review letters.
[73] Monitoring biological membrane-potential changes: a CI QM/MM study. , 2008, The journal of physical chemistry. B.
[74] E. Hückel,et al. Quanstentheoretische Beiträge zum Benzolproblem , 1931 .
[75] W. Pauli,et al. Über den Zusammenhang des Abschlusses der Elektronengruppen im Atom mit der Komplexstruktur der Spektren , 1925 .
[76] Timothy Clark,et al. AM1* parameters for vanadium and chromium , 2009, Journal of molecular modeling.
[77] Henry S. Rzepa,et al. A global resource for computational chemistry , 2005, Journal of molecular modeling.
[78] J. Pople,et al. Self‐Consistent Molecular‐Orbital Methods. IX. An Extended Gaussian‐Type Basis for Molecular‐Orbital Studies of Organic Molecules , 1971 .
[79] Walter Thiel,et al. Beyond the MNDO model: Methodical considerations and numerical results , 1993, J. Comput. Chem..
[80] W. Heisenberg,et al. Zur Quantentheorie der Molekeln , 1924 .
[81] Kenneth M Merz,et al. Interaction energy decomposition in protein-protein association: a quantum mechanical study of barnase-barstar complex. , 2007, Biophysical chemistry.
[82] Jirí Cerný,et al. Benchmark database of accurate (MP2 and CCSD(T) complete basis set limit) interaction energies of small model complexes, DNA base pairs, and amino acid pairs. , 2006, Physical chemistry chemical physics : PCCP.