The C. elegans zyg-1 Gene Encodes a Regulator of Centrosome Duplication with Distinct Maternal and Paternal Roles in the Embryo

Centrosome duplication is a critical step in assembly of the bipolar mitotic spindle, but the molecular mechanisms regulating this process during the cell cycle and during animal development are poorly understood. Here, we report that the zyg-1 gene of Caenorhabditis elegans is an essential regulator of centrosome duplication. ZYG-1 is a protein kinase specifically required for daughter centriole formation that localizes transiently to centrosomes and acts at least one cell cycle prior to each spindle assembly event. In the embryo, ZYG-1 participates in a unique regulatory scheme whereby paternal ZYG-1 regulates duplication and bipolar spindle assembly during the first cell cycle, and maternal ZYG-1 regulates these processes thereafter. ZYG-1 is therefore a key molecular component of the centrosome/centriole duplication process.

[1]  W. Wood,et al.  Parental effects and phenotypic characterization of mutations that affect early development in Caenorhabditis elegans. , 1980, Developmental biology.

[2]  U. Strausfeld,et al.  Both cyclin A and cyclin E have S-phase promoting (SPF) activity in Xenopus egg extracts. , 1996, Journal of cell science.

[3]  G. Borisy,et al.  Centriole cycle in Chinese hamster ovary cells as determined by whole- mount electron microscopy , 1981, The Journal of cell biology.

[4]  E. Hinchcliffe,et al.  Control of centrosome reproduction: the right number at the right time. , 1999, Biology of the cell.

[5]  Alexey Khodjakov,et al.  Centrosome-independent mitotic spindle formation in vertebrates , 2000, Current Biology.

[6]  Eric Karsenti,et al.  Self-organization of microtubules into bipolar spindles around artificial chromosomes in Xenopus egg extracts , 1996, Nature.

[7]  J. White,et al.  A genetic screen for temperature-sensitive cell-division mutants of Caenorhabditis elegans. , 1998, Genetics.

[8]  J. White,et al.  The spd-2 gene is required for polarization of the anteroposterior axis and formation of the sperm asters in the Caenorhabditis elegans zygote. , 2000, Developmental biology.

[9]  D. Mazia,et al.  The Multiplicity of the Mitotic Centers and the Time-Course of Their Duplication and Separation , 1960, The Journal of biophysical and biochemical cytology.

[10]  C. Mello,et al.  pos-1 encodes a cytoplasmic zinc-finger protein essential for germline specification in C. elegans. , 1999, Development.

[11]  Andrew Smith Genome sequence of the nematode C-elegans: A platform for investigating biology , 1998 .

[12]  H. F. Horn,et al.  Nucleophosmin/B23 Is a Target of CDK2/Cyclin E in Centrosome Duplication , 2000, Cell.

[13]  C. Rieder,et al.  Protein synthesis and the cell cycle: centrosome reproduction in sea urchin eggs is not under translational control , 1990, The Journal of cell biology.

[14]  G. Schatten The centrosome and its mode of inheritance: the reduction of the centrosome during gametogenesis and its restoration during fertilization. , 1994, Developmental biology.

[15]  P. Meraldi,et al.  A centrosomal function for the human Nek2 protein kinase, a member of the NIMA family of cell cycle regulators , 1998, The EMBO journal.

[16]  R. Palazzo,et al.  Differential regulation of maternal vs. paternal centrosomes. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[17]  J. McIntosh,et al.  Spermatogenesis in males of the free-living nematode, Caenorhabditis elegans. , 1978, Journal of ultrastructure research.

[18]  S. Brenner The genetics of Caenorhabditis elegans. , 1974, Genetics.

[19]  P. Meraldi,et al.  C-Nap1, a Novel Centrosomal Coiled-Coil Protein and Candidate Substrate of the Cell Cycle–regulated Protein Kinase Nek2 , 1998, The Journal of cell biology.

[20]  K. Kemphues,et al.  Maternal-effect lethal mutations on linkage group II of Caenorhabditis elegans. , 1988, Genetics.

[21]  J. Raff,et al.  The centrosome. , 1993, Scientific American.

[22]  M. P. Cummings,et al.  PAUP* Phylogenetic analysis using parsimony (*and other methods) Version 4 , 2000 .

[23]  S. Ward,et al.  7 Germ-line Development and Fertilization , 1988 .

[24]  N. Munakata [Genetics of Caenorhabditis elegans]. , 1989, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme.

[25]  M. Kirschner,et al.  Early events in DNA replication require cyclin E and are blocked by p21CIP1 , 1995, The Journal of cell biology.

[26]  T. Blumenthal Trans-splicing and polycistronic transcription in Caenorhabditis elegans. , 1995, Trends in genetics : TIG.

[27]  J. B. Rattner,et al.  Dependence of centriole formation on protein synthesis , 1976, The Journal of cell biology.

[28]  H. Lipkin Where is the ?c? , 1978 .

[29]  E. Nishida,et al.  Cyclin-dependent kinase 2 (Cdk2) is required for centrosome duplication in mammalian cells , 1999, Current Biology.

[30]  R. Porter,et al.  DNA transformation. , 1988, Methods in enzymology.

[31]  D. Albertson Formation of the first cleavage spindle in nematode embryos. , 1984, Developmental biology.

[32]  J. Rossier,et al.  Basal body duplication in Paramecium requires gamma-tubulin. , 1999, Current biology : CB.

[33]  T. Stearns,et al.  Components of an SCF ubiquitin ligase localize to the centrosome and regulate the centrosome duplication cycle. , 1999, Genes & development.

[34]  M. Winey,et al.  MPS1 and MPS2: novel yeast genes defining distinct steps of spindle pole body duplication , 1991, The Journal of cell biology.

[35]  T. Stearns,et al.  Cyclin-dependent kinase control of centrosome duplication. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[36]  C. Nüsslein-Volhard,et al.  The origin of pattern and polarity in the Drosophila embryo , 1992, Cell.

[37]  A. Fire,et al.  Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans , 1998, Nature.

[38]  G. Schatten,et al.  The Kinesin-Related Protein, Hset, Opposes the Activity of Eg5 and Cross-Links Microtubules in the Mammalian Mitotic Spindle , 1999, The Journal of cell biology.

[39]  W. Wood The Nematode Caenorhabditis elegans , 1988 .

[40]  S. Doxsey,et al.  Centrosome duplication continues in cycloheximide-treated Xenopus blastulae in the absence of a detectable cell cycle , 1990, The Journal of cell biology.

[41]  C. Rieder,et al.  Centriole number and the reproductive capacity of spindle poles , 1985, The Journal of cell biology.

[42]  J. Rossier,et al.  Basal body duplication in Paramecium requires γ-tubulin , 1999, Current Biology.

[43]  Andrew Fire,et al.  Chapter 19 DNA Transformation , 1995 .

[44]  Jiri Bartek,et al.  Centrosome duplication in mammalian somatic cells requires E2F and Cdk2–Cyclin A , 1999, Nature Cell Biology.

[45]  J. Maller,et al.  Requirement of Cdk2-cyclin E activity for repeated centrosome reproduction in Xenopus egg extracts. , 1999, Science.

[46]  R. Zinkowski,et al.  Dissociation of centrosome replication events from cycles of DNA synthesis and mitotic division in hydroxyurea-arrested Chinese hamster ovary cells , 1995, The Journal of cell biology.

[47]  M. Bornens,et al.  A Role for Centrin 3 in Centrosome Reproduction , 2000, The Journal of cell biology.

[48]  J. Peters,et al.  SCF and APC: the Yin and Yang of cell cycle regulated proteolysis. , 1998, Current opinion in cell biology.

[49]  C. Rieder,et al.  The checkpoint control for anaphase onset does not monitor excess numbers of spindle poles or bipolar spindle symmetry. , 1997, Journal of cell science.

[50]  Patterning in the C. elegans embryo. , 1994, Trends in genetics : TIG.