Implementing Tableaux by Decision Diagrams

Binary Decision Diagrams (BDDs) are usually thought of as devices engineered specially for classical propositional logic. We show that we can build on one of their variants, Minato's zero-suppressed BDDs, to build compact data structures that encode whole tableaux. We call these structures tableaux decision diagrams (TDDs), and show how tableaux proof search is implemented in this framework. For this to be eecient, we have to restrict to canonical proof formats (in the sense of Galmiche et al.) to be able to take advantage of sharing in TDDs. Sharing is fundamental, not because it reduces memory consumption, but because it allows us to expand or close many tableaux paths in parallel, with corresponding gains in eeciency. We provide some empirical evidence that this is indeed eecient, by illustrating the method on a well-chosen system for propositional intuitionistic logic.

[1]  Gopalan Nadathur,et al.  Uniform Proofs as a Foundation for Logic Programming , 1991, Ann. Pure Appl. Log..

[2]  N. K. Zamov,et al.  Maslov's Inverse Method and Decidable Classes , 1989, Ann. Pure Appl. Log..

[3]  Lincoln A. Wallen Matrix Proof Methods for Modal Logics , 1987, IJCAI.

[4]  Jean Goubault HimML: Standard ML with Fast Sets and Maps , 1994 .

[5]  Joachim Posegga,et al.  Deduktion mit Shannongraphen für Prädikatenlogik erster Stufe , 1993, DISKI.

[6]  Richard C. T. Lee,et al.  Symbolic logic and mechanical theorem proving , 1973, Computer science classics.

[7]  Jean Goubault A Bdd-based Skolemization Procedure , 1994 .

[8]  Roy Dyckhoff,et al.  Contraction-free sequent calculi for intuitionistic logic , 1992, Journal of Symbolic Logic.

[9]  Shin-ichi Minato,et al.  Zero-Suppressed BDDs for Set Manipulation in Combinatorial Problems , 1993, 30th ACM/IEEE Design Automation Conference.

[10]  M. Fitting Proof Methods for Modal and Intuitionistic Logics , 1983 .

[11]  R. Bryant Graph-Based Algorithms for Boolean Function Manipulation12 , 1986 .

[12]  Natarajan Shankar,et al.  Proof Search in the Intuitionistic Sequent Calculus , 1992, CADE.

[13]  Guy Perrier,et al.  Foundations of Proof Search Strategies Design in Linear Logic , 1994, LFCS.

[14]  Jean Goubault-Larrecq Proving with BDDs and Control of Information , 1994, CADE.

[15]  Laurent Mauborgne,et al.  Abstract Interpretation Using TDGs , 1994, SAS.

[16]  Hans Jürgen Ohlbach,et al.  A Resolution Calculus for Modal Logics , 1988, CADE.

[17]  Jean Goubault Demonstration automatique en logique classique : complexite et methodes , 1993 .

[18]  Gerhard Jäger,et al.  Propositional Logics on the Computer , 1995, TABLEAUX.