Golub–Kahan bidiagonalization for ill-conditioned tensor equations with applications

[1]  Alessandro Buccini,et al.  Generalized singular value decomposition with iterated Tikhonov regularization , 2020, J. Comput. Appl. Math..

[2]  Khalide Jbilou,et al.  On global iterative schemes based on Hessenberg process for (ill-posed) Sylvester tensor equations , 2020, J. Comput. Appl. Math..

[3]  Stefan Kindermann,et al.  A simplified L-curve method as error estimator , 2019, ArXiv.

[4]  Baohua Huang,et al.  Krylov subspace methods to solve a class of tensor equations via the Einstein product , 2019, Numerical Linear Algebra with Applications.

[5]  Baodong Zheng,et al.  Sensitivity analysis of the Lyapunov tensor equation , 2019 .

[6]  Qing-Wen Wang,et al.  Extending BiCG and BiCR methods to solve the Stein tensor equation , 2019, Comput. Math. Appl..

[7]  L. Reichel,et al.  On the choice of subspace for large-scale Tikhonov regularization problems in general form , 2019, Numerical Algorithms.

[8]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[9]  Khalide Jbilou,et al.  Global Golub-Kahan bidiagonalization applied to large discrete ill-posed problems , 2017, J. Comput. Appl. Math..

[10]  Mohammad Khorsand Zak,et al.  An iterative method for solving the continuous sylvester equation by emphasizing on the skew-hermitian parts of the coefficient matrices , 2017, Int. J. Comput. Math..

[11]  Khalide Jbilou,et al.  A global Lanczos method for image restoration , 2016, J. Comput. Appl. Math..

[12]  Fatemeh Panjeh Ali Beik,et al.  On the Krylov subspace methods based on tensor format for positive definite Sylvester tensor equations , 2016, Numer. Linear Algebra Appl..

[13]  Lea Fleischer,et al.  Regularization of Inverse Problems , 1996 .

[14]  Mohammad Khorsand Zak,et al.  Nested splitting CG-like iterative method for solving the continuous Sylvester equation and preconditioning , 2014, Adv. Comput. Math..

[15]  Mohammad Khorsand Zak,et al.  Nested splitting conjugate gradient method for matrix equation AXB=CAXB=C and preconditioning , 2013, Comput. Math. Appl..

[16]  Lars Grasedyck,et al.  F ¨ Ur Mathematik in Den Naturwissenschaften Leipzig a Projection Method to Solve Linear Systems in Tensor Format a Projection Method to Solve Linear Systems in Tensor Format , 2022 .

[17]  Alaeddin Malek,et al.  Solving Fully Three-Dimensional Microscale Dual Phase Lag Problem Using Mixed-Collocation, Finite Difference Discretization , 2012 .

[18]  Ben-Wen Li,et al.  Chebyshev Collocation Spectral Method for Three-Dimensional Transient Coupled Radiative–Conductive Heat Transfer , 2012 .

[19]  Linzhang Lu,et al.  A projection method and Kronecker product preconditioner for solving Sylvester tensor equations , 2012, Science China Mathematics.

[20]  Abderrahman Bouhamidi,et al.  A generalized global Arnoldi method for ill-posed matrix equations , 2012, J. Comput. Appl. Math..

[21]  S. Kindermann CONVERGENCE ANALYSIS OF MINIMIZATION-BASED NOISE LEVEL-FRE E PARAMETER CHOICE RULES FOR LINEAR ILL-POSED PROBLEMS , 2011 .

[22]  Andrzej Cichocki,et al.  Nonnegative Matrix and Tensor Factorization T , 2007 .

[23]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[24]  Lothar Reichel,et al.  A new zero-finder for Tikhonov regularization , 2008 .

[25]  Alaeddin Malek,et al.  A mixed collocation-finite difference method for 3D microscopic heat transport problems , 2008 .

[26]  Timothy Nigel Phillips,et al.  Viscoelastic flow in an undulating tube using spectral methods , 2004 .

[27]  D. Calvetti,et al.  Tikhonov Regularization of Large Linear Problems , 2003 .

[28]  H. Engl,et al.  Regularization of Inverse Problems , 1996 .

[29]  G. Golub Matrix computations , 1983 .

[30]  Michael A. Saunders,et al.  LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares , 1982, TOMS.

[31]  L. Eldén Algorithms for the regularization of ill-conditioned least squares problems , 1977 .