Temperature dependence of threshold current for a quantum-well heterostructure laser

Abstract The threshold current density, J th , of a quantum-well laser diode is calculated taking into account the quasi-two-dimensional nature of the heterostructure. The calculated value of J th ( T ) for a quantum-well laser diode is found, in agreement with experiment, to be less temperature sensitive than that of a conventional double heterojunction laser. The step-like densities of states and the perturbed (hot) carrier distribution of a quasi-two-dimensional structure are responsible for the weaker temperature dependence. Supporting data on quantum-well Al x Ga 1- x AsGaAs heterostructure laser diodes grown by MO-CVD are presented showing that in the conventional expression J th ( T ) = J th (0) exp ( T / T 0 ), T 0 can be as high as ∼ 437°C.

[1]  Frank Stern,et al.  Spontaneous and Stimulated Recombination Radiation in Semiconductors , 1964 .

[2]  N. Holonyak,et al.  Phonon‐assisted recombination and stimulated emission in quantum‐well AlxGa1−xAs‐GaAs heterostructures , 1980 .

[3]  P. D. Dapkus,et al.  Continuous 300 °K laser operation of single‐quantum‐well AlxGa1−xAs‐GaAs heterostructure diodes grown by metalorganic chemical vapor deposition , 1979 .

[4]  R. Dupuis 700‐h continuous room‐temperature operation of AlxGa1−xAs‐GaAs heterostructure lasers grown by metalorganic chemical vapor deposition , 1979 .

[5]  Karl Hess,et al.  Temperature dependence of threshold current for quantum‐well AlxGa1−xAs‐GaAs heterostructure laser diodes , 1980 .

[6]  N. Holonyak,et al.  Phonon‐sideband MO‐CVD quantum‐well AlxGa1−xAs‐GaAs heterostructure laser , 1979 .

[7]  N. Holonyak,et al.  Single and multiple thin‐layer (Lz≲400 A) In1−xGaxP1−zAsz‐InP heterostructure light emitters and lasers (λ∼1.1 μm, 77 °K) , 1978 .

[8]  M. Adams Theoretical effects of exponential band tails on the properties of the injection laser , 1969 .

[9]  V. Lutskiǐ Quantum size effect–‐present state and perspectives of experimental investigations , 1970 .

[10]  F. Stern,et al.  Properties of Semiconductor Surface Inversion Layers in the Electric Quantum Limit , 1967 .

[11]  J. Shah Hot electrons and phonons under high intensity photoexcitation of semiconductors , 1978 .

[12]  F. Stern Effect of Band Tails on Stimulated Emission of Light in Semiconductors , 1966 .

[13]  I. Hayashi,et al.  GaAs–AlxGa1−xAs Double Heterostructure Injection Lasers , 1971 .

[14]  G. E. Stillman,et al.  LPE In1−xGaxP1−zAsz (x∼0.12, z∼0.26) DH laser with multiple thin‐layer (<500 Å) active region , 1977 .

[15]  P. D. Dapkus,et al.  Room‐temperature laser operation of quantum‐well Ga(1−x)AlxAs‐GaAs laser diodes grown by metalorganic chemical vapor deposition , 1978 .

[16]  N. Holonyak,et al.  Phonon-assisted recombination and stimulated emission in multiple quantum-well Mo-CVD AlxGa1-xAs-GaAs heterostructures (Lz∽50Å, E1-1' -2× h̵ωLO⪅h̵ω , 1979 .

[17]  N. Holonyak,et al.  Continuous room‐temperature multiple‐quantum‐well AlxGa1−xAs‐GaAs injection lasers grown by metalorganic chemical vapor deposition , 1979 .