Roth's Theorem implies a Weakened Version of the ABC Conjecture for Special Cases
暂无分享,去创建一个
[1] M. Mignotte,et al. Classical and modular approaches to exponential Diophantine equations I. Fibonacci and Lucas perfect powers , 2004, math/0403046.
[2] P. Mihăilescu. Primary cyclotomic units and a proof of Catalans conjecture , 2004 .
[3] M. V. Frankenhuysen. A Lower Bound in the abc Conjecture , 2000 .
[4] Samir Khuller,et al. Open problems , 1997, SIGACT News.
[5] J. Cohn. Perfect Pell Powers , 1996, Glasgow Mathematical Journal.
[6] A. Wiles. Modular Elliptic Curves and Fermat′s Last Theorem(抜粋) (フェルマ-予想がついに解けた!?) , 1995 .
[7] M. Waldschmidt. Introduction to Diophantine Methods , 2007 .
[8] E. Bombieri,et al. Heights in Diophantine Geometry , 2006 .
[9] M. V. Frankenhuysen. THE ABC CONJECTURE IMPLIES ROTH'S THEOREM AND MORDELL'S CONJECTURE , 1998 .
[10] M. V. Frankenhuysen. Hyperbolic spaces and the abc conjecture , 1995 .
[11] Alfred J. van der Poorten,et al. Continued Fractions of Algebraic Numbers , 1995 .
[12] J. Oesterlé,et al. Nouvelles approches du «théorème» de Fermat , 1988 .