Real-time time-dependent density functional theory approach for frequency-dependent nonlinear optical response in photonic molecules.

We present ab initio calculations of frequency-dependent linear and nonlinear optical responses based on real-time time-dependent density functional theory for arbitrary photonic molecules. This approach is based on an extension of an approach previously implemented for a linear response using the electronic structure program SIESTA. Instead of calculating excited quantum states, which can be a bottleneck in frequency-space calculations, the response of large molecular systems to time-varying electric fields is calculated in real time. This method is based on the finite field approach generalized to the dynamic case. To speed the nonlinear calculations, our approach uses Gaussian enveloped quasimonochromatic external fields. We thereby obtain the frequency-dependent second harmonic generation beta(-2omega;omega,omega), the dc nonlinear rectification beta(0;-omega,omega), and the electro-optic effect beta(-omega;omega,0). The method is applied to nanoscale photonic nonlinear optical molecules, including p-nitroaniline and the FTC chromophore, i.e., 2-[3-Cyano-4-(2-{5-[2-(4-diethylamino-phenyl)-vinyl]-thiophen-2-yl}-vinyl)-5,5-dimethyl-5H-furan-2-ylidene]-malononitrile, and yields results in good agreement with experiment.

[1]  X. Andrade,et al.  Time-dependent density functional theory scheme for efficient calculations of dynamic (hyper)polarizabilities. , 2007, The Journal of chemical physics.

[2]  J. Autschbach,et al.  Study of static and dynamic first hyperpolarizabilities using time-dependent density functional quadratic response theory with local contribution and natural bond orbital analysis. , 2006, The Journal of chemical physics.

[3]  E. Davidson,et al.  Hyperpolarizability: Calibration of theoretical methods for chloroform, water, acetonitrile, and p-nitroaniline , 2006 .

[4]  H. Reis,et al.  Problems in the comparison of theoretical and experimental hyperpolarizabilities revisited. , 2006, The Journal of chemical physics.

[5]  B H Robinson,et al.  Influence of isomerization on nonlinear optical properties of molecules. , 2006, The journal of physical chemistry. B.

[6]  Takashi Nakatsukasa,et al.  Real‐time, real‐space implementation of the linear response time‐dependent density‐functional theory , 2006 .

[7]  Ju Li,et al.  Time-dependent density functional theory with ultrasoft pseudopotentials: Real-time electron propagation across a molecular junction , 2005, cond-mat/0510643.

[8]  C. Toro,et al.  B3LYP study of the dipole moment and the static dipole (hyper)polarizabilities of para-nitroaniline in gas phase , 2006 .

[9]  S. Mukamel Generalized time-dependent density-functional-theory response functions for spontaneous density fluctuations and nonlinear response: Resolving the causality paradox in real time , 2005 .

[10]  K. Burke,et al.  Time-dependent density functional theory: past, present, and future. , 2004, The Journal of chemical physics.

[11]  Angel Rubio,et al.  Propagators for the time-dependent Kohn-Sham equations. , 2004, The Journal of chemical physics.

[12]  R. Martin,et al.  Electronic Structure: Basic Theory and Practical Methods , 2004 .

[13]  V. Chernyak,et al.  Resonant nonlinear polarizabilities in the time-dependent density functional theory , 2003 .

[14]  Á. Rubio,et al.  octopus: a first-principles tool for excited electron-ion dynamics. , 2003 .

[15]  Paweł Sałek,et al.  Density-functional theory of linear and nonlinear time-dependent molecular properties , 2002 .

[16]  Filipp Furche,et al.  Adiabatic time-dependent density functional methods for excited state properties , 2002 .

[17]  L. Reining,et al.  Electronic excitations: density-functional versus many-body Green's-function approaches , 2002 .

[18]  D. Chong Recent Advances in Density Functional Methods Part III , 2002 .

[19]  R. Martin,et al.  Calculation of the optical response of atomic clusters using time-dependent density functional theory and local orbitals , 2001, cond-mat/0109488.

[20]  Andrew M. Moran,et al.  Solvent effects on ground and excited electronic state structures of p-nitroaniline , 2001 .

[21]  Filipp Furche,et al.  On the density matrix based approach to time-dependent density functional response theory , 2001 .

[22]  Graham R. Fleming,et al.  Excitation energy transfer in condensed media , 2001 .

[23]  J. Brédas,et al.  Coupled-cluster approach for studying the electronic and nonlinear optical properties of conjugated molecules , 2000 .

[24]  Á. Rubio,et al.  Real-space, real-time method for the dielectric function , 2000, cond-mat/0005512.

[25]  K. Kamada,et al.  Molecular Design for Organic Nonlinear Optics: Polarizability and Hyperpolarizabilities of Furan Homologues Investigated by Ab Initio Molecular Orbital Method† , 2000 .

[26]  P. Ordejón Linear Scaling ab initio Calculations in Nanoscale Materials with SIESTA , 2000 .

[27]  M. Head‐Gordon,et al.  Configuration interaction singles, time-dependent Hartree-Fock, and time-dependent density functional theory for the electronic excited states of extended systems , 1999 .

[28]  Emilio Artacho,et al.  LINEAR-SCALING AB-INITIO CALCULATIONS FOR LARGE AND COMPLEX SYSTEMS , 1999 .

[29]  Serdar Ogut,et al.  Ab Initio Excitation Spectra and Collective Electronic Response in Atoms and Clusters , 1999 .

[30]  Larry R. Dalton,et al.  Polymeric Electro-optic Modulators: From Chromophore Design to Integration with Semiconductor Very Large Scale Integration Electronics and Silica Fiber Optics , 1999 .

[31]  Evert Jan Baerends,et al.  Calculating frequency-dependent hyperpolarizabilities using time-dependent density functional theory , 1998 .

[32]  M. Frisch,et al.  A time-dependent density functional theory study of the electronically excited states of formaldehyde, acetaldehyde and acetone , 1998 .

[33]  G. Scuseria,et al.  An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules , 1998 .

[34]  Dennis R. Salahub,et al.  Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: Characterization and correction of the time-dependent local density approximation ionization threshold , 1998 .

[35]  E. Donley,et al.  A comparison of molecular hyperpolarizabilities from gas and liquid phase measurements , 1998 .

[36]  M. Kappes,et al.  Experiment versus Time Dependent Density Functional Theory Prediction of Fullerene Electronic Absorption , 1998 .

[37]  Dmitrii E. Makarov,et al.  van der Waals Energies in Density Functional Theory , 1998 .

[38]  Daniel Sánchez-Portal,et al.  Density‐functional method for very large systems with LCAO basis sets , 1997 .

[39]  Akira Watanabe,et al.  HYPER-RAYLEIGH SCATTERING STUDIES OF AN IONIC SPECIES : SOLVENT EFFECT ON HYPERPOLARIZABILITY OF 1-ANILINONAPHTHALENE-8-SULFONIC ACID AMMONIUM SALT , 1997 .

[40]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[41]  George F. Bertsch,et al.  Time-dependent local-density approximation in real time , 1996 .

[42]  R. Ahlrichs,et al.  Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory , 1996 .

[43]  Richard L. Sutherland,et al.  Handbook of Nonlinear Optics , 1996 .

[44]  Bertsch,et al.  Time-dependent local-density approximation in real time. , 1996, Physical review. B, Condensed matter.

[45]  R. Leeuwen,et al.  Exchange-correlation potential with correct asymptotic behavior. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[46]  Jen,et al.  Experimental studies of the length dependence of second-order nonlinear optical responses of conjugated molecules. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[47]  H. Ågren,et al.  Direct atomic orbital based self‐consistent‐field calculations of nonlinear molecular properties. Application to the frequency dependent hyperpolarizability of para‐nitroaniline , 1993 .

[48]  Michel Dupuis,et al.  Electron correlation effects in hyperpolarizabilities of p-nitroaniline , 1993 .

[49]  David P. Shelton,et al.  Problems in the comparison of theoretical and experimental hyperpolarizabilities , 1992 .

[50]  Prasad,et al.  Frequency dependence of linear and nonlinear optical properties of conjugated polyenes: An ab initio time-dependent coupled Hartree-Fock study. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[51]  K. Clays,et al.  Hyper-Rayleigh scattering in solution. , 1991, Physical review letters.

[52]  P. Prasad,et al.  Nonlinear optical properties of p‐nitroaniline: An ab initio time‐dependent coupled perturbed Hartree–Fock study , 1991 .

[53]  Martins,et al.  Efficient pseudopotentials for plane-wave calculations. , 1991, Physical review. B, Condensed matter.

[54]  David J. Williams,et al.  Introduction to Nonlinear Optical Effects in Molecules and Polymers , 1991 .

[55]  P. N. Butcher,et al.  The Elements of Nonlinear Optics: Preface , 1990 .

[56]  Hayden,et al.  Static polarizability of interacting pi electrons in conjugated polymers. , 1989, Physical review. B, Condensed matter.

[57]  O. Sankey,et al.  Ab initio multicenter tight-binding model for molecular-dynamics simulations and other applications in covalent systems. , 1989, Physical review. B, Condensed matter.

[58]  Warren E. Pickett,et al.  Pseudopotential methods in condensed matter applications , 1989 .

[59]  Wong,et al.  Nonlinear optical properties of linear chains and electron-correlation effects. , 1988, Physical review. B, Condensed matter.

[60]  Joseph Zyss,et al.  Nonlinear optical properties of organic molecules and crystals , 1987 .

[61]  E. Gross,et al.  Density-Functional Theory for Time-Dependent Systems , 1984 .

[62]  A. F. Garito,et al.  Dispersion of the nonlinear second-order optical susceptibility of organic systems (A) , 1983 .

[63]  A. Zangwill Density functional theory of nonlinear optical response , 1983 .

[64]  Andrew Zangwill,et al.  Density-functional approach to local-field effects in finite systems: Photoabsorption in the rare gases , 1980 .

[65]  R. Alben,et al.  Vibrations and electronic states in a model amorphous metal , 1977 .

[66]  B. F. Levine,et al.  Donor—acceptor charge transfer contributions to the second order hyperpolarizability , 1976 .

[67]  N. S. Ostlund,et al.  Self‐Consistent Perturbation Theory. I. Finite Perturbation Methods , 1968 .

[68]  C. Roothaan,et al.  Electric Dipole Polarizability of Atoms by the Hartree—Fock Method. I. Theory for Closed‐Shell Systems , 1965 .

[69]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[70]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[71]  J. Crank,et al.  A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type , 1947, Mathematical Proceedings of the Cambridge Philosophical Society.