Influence of lignocellulosic substrate and phosphorus flame retardant type on grafting yield and flame retardancy

[1]  B. Kandola,et al.  Intumescent fire‐retardant coatings for plastics based on poly(vinylphosphonic acid): Improving water resistance with comonomers , 2020, Journal of Applied Polymer Science.

[2]  R. Sonnier,et al.  Assessment of olive pomace wastes as flame retardants , 2020, Journal of Applied Polymer Science.

[3]  R. Sonnier,et al.  Influence of monomer reactivity on radiation grafting of phosphorus flame retardants on flax fabrics , 2019, Polymer Degradation and Stability.

[4]  L. Ferry,et al.  Lignin Nanoparticles as A Promising Way for Enhancing Lignin Flame Retardant Effect in Polylactide , 2019, Materials.

[5]  J. Roux,et al.  Chemical treatments of flax fibers – Control of the diffusion of molecules into the fiber structure , 2019, Industrial Crops and Products.

[6]  A. Bergeret,et al.  A flame retarded chitosan binder for insulating miscanthus/recycled textile fibers reinforced biocomposites , 2018, Journal of Applied Polymer Science.

[7]  R. Sonnier,et al.  Grafting of phosphorus flame retardants on flax fabrics: Comparison between two routes , 2018 .

[8]  R. Sonnier,et al.  Radiation-induced modifications in natural fibres and their biocomposites: Opportunities for controlled physico-chemical modification pathways? , 2017 .

[9]  R. Sonnier,et al.  Radiation-grafting of flame retardants on flax fabrics – A comparison between different flame retardant structures , 2017 .

[10]  S. Bourbigot,et al.  Phosphorylation of lignin: characterization and investigation of the thermal decomposition , 2017 .

[11]  Liang Huang,et al.  A review of recent research on the use of cellulosic fibres, their fibre fabric reinforced cementitious, geo-polymer and polymer composites in civil engineering , 2016 .

[12]  S. Bourbigot,et al.  Phosphorylation of lignin to flame retard acrylonitrile butadiene styrene (ABS) , 2016 .

[13]  R. Sonnier,et al.  Improving the flame retardancy of flax fabrics by radiation grafting of phosphorus compounds , 2015 .

[14]  Yan Li,et al.  The voids formation mechanisms and their effects on the mechanical properties of flax fiber reinforced epoxy composites , 2015 .

[15]  Maya J John,et al.  Review on flammability of biofibres and biocomposites. , 2014, Carbohydrate polymers.

[16]  R. Sonnier,et al.  Effect of cellulose, hemicellulose and lignin contents on pyrolysis and combustion of natural fibers , 2014 .

[17]  L. Ferry,et al.  Use of Py-GC/MS and PCFC to characterize the surface modification of flax fibres , 2014 .

[18]  O. Güven,et al.  Graft copolymerization of glycidyl methacrylate onto delignified kenaf fibers through pre-irradiation technique , 2013 .

[19]  M. Tamada,et al.  Effect of partial delignification of kenaf bast fibers for radiation graft copolymerization , 2013 .

[20]  M. P. Gashti,et al.  UV radiation induced flame retardant cellulose fiber by using polyvinylphosphonic acid/carbon nanotube composite coating , 2013 .

[21]  A. Błędzki,et al.  Biocomposites reinforced with natural fibers: 2000–2010 , 2012 .

[22]  N. Brosse,et al.  Effect of the Pre-Treatment Severity on the Antioxidant Properties of Ethanol Organosolv Miscanthus x giganteus Lignin , 2012 .

[23]  N. Brosse,et al.  Extraction of Polyphenolics from Lignocellulosic Materials and Agricultural Byproducts for the Formulation of Resin for Wood Adhesives , 2011 .

[24]  J. Lim,et al.  Effects of diammonium phosphate on the flammability and mechanical properties of bio-composites , 2011 .

[25]  K. Opwis,et al.  Permanent flame retardant finishing of textile materials by a photochemical immobilization of vinyl phosphonic acid , 2011 .

[26]  Jenny Alongi,et al.  Sol–gel treatments for enhancing flame retardancy and thermal stability of cotton fabrics: optimisation of the process and evaluation of the durability , 2011 .

[27]  A V Bridgwater,et al.  Variation in Miscanthus chemical composition and implications for conversion by pyrolysis and thermo-chemical bio-refining for fuels and chemicals. , 2011, Bioresource technology.

[28]  N. Brosse,et al.  Extraction, Characterization and Utilization of Organosolv Miscanthus Lignin for the Conception of Environmentally Friendly Mixed Tannin/Lignin Wood Resins , 2011 .

[29]  N. Brosse,et al.  Effect of autohydrolysis of Miscanthus x giganteus on lignin structure and organosolv delignification. , 2010, Bioresource technology.

[30]  A. Ragauskas,et al.  Effects of process severity on the chemical structure of Miscanthus ethanol organosolv lignin , 2010 .

[31]  B. Ershov,et al.  A sorbent based on phosphorylated lignin , 2010 .

[32]  R. Anandjiwala,et al.  Flammability of Natural Fiber-reinforced Composites and Strategies for Fire Retardancy: A Review , 2010 .

[33]  R. Kozłowski,et al.  Natural Fibers Production, Processing, and Application: Inventory and Future Prospects , 2010 .

[34]  A. Ragauskas,et al.  DILUTE SULPHURIC ACID AND ETHANOL ORGANOSOLV PRETREATMENT OF Miscanthus x Giganteus , 2010 .

[35]  S. Liodakis,et al.  The fire-retarding effect of inorganic phosphorus compounds on the combustion of cellulosic materials , 2009 .

[36]  A. Ragauskas,et al.  Characterization of milled wood lignin and ethanol organosolv lignin from miscanthus , 2009 .

[37]  S. Levchik,et al.  Flame Retardants for Plastics and Textiles , 2009 .

[38]  Jenny M. Jones,et al.  Phosphorus catalysis in the pyrolysis behaviour of biomass , 2008 .

[39]  A. Horrocks An Introduction to the Burning Behaviour of Cellulosic Fibres , 2008 .

[40]  T. R. Hull,et al.  Thermal behavior of covalently bonded phosphonate flame-retarded poly(methyl methacrylate) systems† , 2008 .

[41]  Maya Jacob John,et al.  Biofibres and Biocomposites , 2008 .

[42]  M. Tsafack,et al.  Towards multifunctional surfaces using the plasma-induced graft-polymerization (PIGP) process: Flame and waterproof cotton textiles , 2007 .

[43]  Gang Sun,et al.  Effect of phosphorus and nitrogen on flame retardant cellulose : A study of phosphorus compounds , 2007 .

[44]  D. Bishop,et al.  Physical and chemical properties of flax fibres from stand-retted crops desiccated at different stages of maturity , 2005 .

[45]  J. Kenny,et al.  A Review on Natural Fibre-Based Composites—Part II , 2005 .

[46]  J. Kenny,et al.  A Review on Natural Fibre-Based Composites-Part I , 2004 .

[47]  A. Błędzki,et al.  Composites reinforced with cellulose based fibres , 1999 .

[48]  O. Theander Chemical analysis of lignocellulose materials , 1991 .

[49]  A. Fernandez-Pello,et al.  Controlling Mechanisms of Flame Spread , 1983 .

[50]  Clayton Huggett,et al.  Estimation of rate of heat release by means of oxygen consumption measurements , 1980 .

[51]  O. Egyed,et al.  Investigations on the flame-retardation of cellulosic fibrous materials , 1979 .

[52]  O. Egyed,et al.  Investigations on the flame-retardation of cellulosic fibrous materials , 1979 .

[53]  J. C. Arthur,et al.  Flame resistant cotton fabrics prepared by radiation‐initiated polymerization with vinyl phosphonate oligomer and N‐methylolacrylamide , 1979 .

[54]  D. Smith,et al.  The effects of lignin on the degradation of wood by gamma irradiation. , 1959, Radiation research.