Coalescent inference for infectious disease: meta-analysis of hepatitis C

Genetic analysis of pathogen genomes is a powerful approach to investigating the population dynamics and epidemic history of infectious diseases. However, the theoretical underpinnings of the most widely used, coalescent methods have been questioned, casting doubt on their interpretation. The aim of this study is to develop robust population genetic inference for compartmental models in epidemiology. Using a general approach based on the theory of metapopulations, we derive coalescent models under susceptible–infectious (SI), susceptible–infectious–susceptible (SIS) and susceptible–infectious–recovered (SIR) dynamics. We show that exponential and logistic growth models are equivalent to SI and SIS models, respectively, when co-infection is negligible. Implementing SI, SIS and SIR models in BEAST, we conduct a meta-analysis of hepatitis C epidemics, and show that we can directly estimate the basic reproductive number (R0) and prevalence under SIR dynamics. We find that differences in genetic diversity between epidemics can be explained by differences in underlying epidemiology (age of the epidemic and local population density) and viral subtype. Model comparison reveals SIR dynamics in three globally restricted epidemics, but most are better fit by the simpler SI dynamics. In summary, metapopulation models provide a general and practical framework for integrating epidemiology and population genetics for the purposes of joint inference.

[1]  Yi Guan,et al.  Temporally structured metapopulation dynamics and persistence of influenza A H3N2 virus in humans , 2011, Proceedings of the National Academy of Sciences.

[2]  Christl A. Donnelly,et al.  The Foot-and-Mouth Epidemic in Great Britain: Pattern of Spread and Impact of Interventions , 2001, Science.

[3]  O. Pybus,et al.  The Global Spread of Hepatitis C Virus 1a and 1b: A Phylodynamic and Phylogeographic Analysis , 2009, PLoS medicine.

[4]  P. Lemey,et al.  Genetic History of Hepatitis C Virus in East Asia , 2008, Journal of Virology.

[5]  Sergei L. Kosakovsky Pond,et al.  Phylodynamics of Infectious Disease Epidemics , 2009, Genetics.

[6]  Marc A Suchard,et al.  Unifying vertical and nonvertical evolution: a stochastic ARG-based framework. , 2010, Systematic biology.

[7]  Joanna B. Goldberg,et al.  Parallel bacterial evolution within multiple patients identifies candidate pathogenicity genes , 2011, Nature Genetics.

[8]  D. Lavanchy,et al.  Evolving epidemiology of hepatitis C virus. , 2011, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[9]  P. Simmonds,et al.  The origin of hepatitis C virus genotypes. , 1997, The Journal of general virology.

[10]  M. Slatkin Gene flow and genetic drift in a species subject to frequent local extinctions. , 1977, Theoretical population biology.

[11]  Andrew Rambaut,et al.  Evolutionary analysis of the dynamics of viral infectious disease , 2009, Nature Reviews Genetics.

[12]  H. Kishino,et al.  Dating of the human-ape splitting by a molecular clock of mitochondrial DNA , 2005, Journal of Molecular Evolution.

[13]  P. Lemey,et al.  The epidemic history of hepatitis C among injecting drug users in Flanders, Belgium , 2008, Journal of Viral Hepatitis.

[14]  J. Hein,et al.  Consequences of recombination on traditional phylogenetic analysis. , 2000, Genetics.

[15]  Huldrych F. Günthard,et al.  Inferring Epidemic Contact Structure from Phylogenetic Trees , 2012, PLoS Comput. Biol..

[16]  Beda Joos,et al.  Estimating the basic reproductive number from viral sequence data. , 2012, Molecular biology and evolution.

[17]  Daniel J. Wilson,et al.  Estimating Diversifying Selection and Functional Constraint in the Presence of Recombination , 2006, Genetics.

[18]  J. Wakeley,et al.  Gene genealogies in a metapopulation. , 2001, Genetics.

[19]  Graham Coop,et al.  Ancestral inference on gene trees under selection. , 2004, Theoretical population biology.

[20]  P. Lemey,et al.  Investigating the Origin and Spread of Hepatitis C Virus Genotype 5a , 2006, Journal of Virology.

[21]  Edoardo Cervoni,et al.  Hepatitis C , 1998, The Lancet.

[22]  O. Pybus,et al.  The Epidemic Behavior of the Hepatitis C Virus , 2001, Science.

[23]  T. Gojobori,et al.  A comparison of the molecular clock of hepatitis C virus in the United States and Japan predicts that hepatocellular carcinoma incidence in the United States will increase over the next two decades , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[24]  Duc Anh Pham,et al.  High prevalence of Hepatitis C virus genotype 6 in Vietnam. , 2009, Asian Pacific journal of allergy and immunology.

[25]  M. Mizokami,et al.  Geographic distribution of hepatitis C virus genotype 6 subtypes in Thailand , 2010, Journal of medical virology.

[26]  Erik M. Volz,et al.  Viral phylodynamics and the search for an ‘effective number of infections’ , 2010, Philosophical Transactions of the Royal Society B: Biological Sciences.

[27]  J. Wakeley,et al.  Segregating sites in Wright's island model. , 1998, Theoretical population biology.

[28]  Katia Koelle,et al.  Rates of coalescence for common epidemiological models at equilibrium , 2012, Journal of The Royal Society Interface.

[29]  R. Levins Evolution in Changing Environments: Some Theoretical Explorations. (MPB-2) , 1968 .

[30]  O. Pybus,et al.  The epidemiology and iatrogenic transmission of hepatitis C virus in Egypt: a Bayesian coalescent approach. , 2003, Molecular biology and evolution.

[31]  O. Pybus,et al.  Population genetic history of hepatitis C virus 1b infection in China. , 2006, The Journal of general virology.

[32]  S. Mano,et al.  Molecular tracing of the global hepatitis C virus epidemic predicts regional patterns of hepatocellular carcinoma mortality. , 2006, Gastroenterology.

[33]  P. Kaye Infectious diseases of humans: Dynamics and control , 1993 .

[34]  M. Nowak,et al.  Superinfection, metapopulation dynamics, and the evolution of diversity. , 1994, Journal of theoretical biology.

[35]  R. Campos,et al.  Phylodynamics of Hepatitis C Virus Subtype 2c in the Province of Córdoba, Argentina , 2011, PloS one.

[36]  James H. Bullard,et al.  The origin of the Haitian cholera outbreak strain. , 2011, The New England journal of medicine.

[37]  P. Simmonds,et al.  Genetic diversity and evolution of hepatitis C virus--15 years on. , 2004, The Journal of general virology.

[38]  O. Pybus,et al.  New trends of HCV infection in China revealed by genetic analysis of viral sequences determined from first-time volunteer blood donors , 2011, Journal of viral hepatitis.

[39]  E. Volz SIR dynamics in random networks with heterogeneous connectivity , 2007, Journal of mathematical biology.

[40]  Paulo R. A. Campos,et al.  Pathogen genetic variation in small-world host contact structures , 2006 .

[41]  J. Robins,et al.  Transmission Dynamics and Control of Severe Acute Respiratory Syndrome , 2003, Science.

[42]  D. Cummings,et al.  Strategies for mitigating an influenza pandemic , 2006, Nature.

[43]  Daniel J. Wilson,et al.  Insights from Genomics into Bacterial Pathogen Populations , 2012, PLoS pathogens.

[44]  M. Mizokami,et al.  Tracing hepatitis C and Delta viruses to estimate their contribution in HCC rates in Mongolia , 2007, Journal of viral hepatitis.

[45]  R. Levins Some Demographic and Genetic Consequences of Environmental Heterogeneity for Biological Control , 1969 .

[46]  E. Lyons,et al.  Pandemic Potential of a Strain of Influenza A (H1N1): Early Findings , 2009, Science.

[47]  J. Wakeley,et al.  Nonequilibrium migration in human history. , 1999, Genetics.

[48]  M. Suchard,et al.  Bayesian Phylogenetics with BEAUti and the BEAST 1.7 , 2012, Molecular biology and evolution.

[49]  Gavin J. D. Smith,et al.  Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic , 2009, Nature.

[50]  R. Levins Evolution in Changing Environments , 1968 .

[51]  B. Charlesworth,et al.  NEUTRAL GENETIC DIVERSITY IN A METAPOPULATION WITH RECURRENT LOCAL EXTINCTION AND RECOLONIZATION , 1999, Evolution; international journal of organic evolution.

[52]  O. Pybus,et al.  The hepatitis C virus epidemic among injecting drug users. , 2005, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.

[53]  O. Pybus,et al.  Viral gene sequences reveal the variable history of hepatitis C virus infection among countries. , 2004, The Journal of infectious diseases.

[54]  O. Pybus,et al.  Bayesian coalescent inference of past population dynamics from molecular sequences. , 2005, Molecular biology and evolution.

[55]  M. Van Ranst,et al.  Evolutionary history of hepatitis C virus genotype 5a in France, a multicenter ANRS study. , 2011, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.

[56]  O. Pybus,et al.  Unifying the Epidemiological and Evolutionary Dynamics of Pathogens , 2004, Science.

[57]  S. Sauleda,et al.  The changing epidemiology of hepatitis C virus infection in Europe. , 2008, Journal of hepatology.

[58]  O. Pybus,et al.  An integrated framework for the inference of viral population history from reconstructed genealogies. , 2000, Genetics.

[59]  Daniel T. Haydon,et al.  Transmission Pathways of Foot-and-Mouth Disease Virus in the United Kingdom in 2007 , 2008, PLoS pathogens.

[60]  G. Lachenal,et al.  Variable epidemic histories of hepatitis C virus genotype 2 infection in West Africa and Cameroon. , 2008, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.

[61]  J. Tang,et al.  A Possible Geographic Origin of Endemic Hepatitis C Virus 6a in Hong Kong: Evidences for the Association with Vietnamese Immigration , 2011, PloS one.

[62]  M. Gabriela M. Gomes,et al.  Genetic Diversity in the SIR Model of Pathogen Evolution , 2009, PloS one.

[63]  Daniel Falush,et al.  Germs, genomes and genealogies. , 2005, Trends in ecology & evolution.

[64]  David A. Rasmussen,et al.  Inference for Nonlinear Epidemiological Models Using Genealogies and Time Series , 2011, PLoS Comput. Biol..

[65]  M. Nordborg,et al.  Coalescent Theory , 2019, Handbook of Statistical Genomics.

[66]  Rebecca R. Gray,et al.  The mode and tempo of hepatitis C virus evolution within and among hosts , 2011, BMC Evolutionary Biology.

[67]  M. Slatkin,et al.  Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations. , 1991, Genetics.

[68]  J. Wakeley The coalescent in an island model of population subdivision with variation among demes. , 2001, Theoretical population biology.

[69]  William H. Press,et al.  Numerical recipes in C , 2002 .

[70]  Sewall Wright,et al.  Breeding Structure of Populations in Relation to Speciation , 1940, The American Naturalist.

[71]  Colin W Shepard,et al.  Global epidemiology of hepatitis C virus infection. , 2005, The Lancet. Infectious diseases.

[72]  J. Wakeley Metapopulation models for historical inference , 2004, Molecular ecology.