From one amino acid to another: tRNA-dependent amino acid biosynthesis

Aminoacyl-tRNAs (aa-tRNAs) are the essential substrates for translation. Most aa-tRNAs are formed by direct aminoacylation of tRNA catalyzed by aminoacyl-tRNA synthetases. However, a smaller number of aa-tRNAs (Asn-tRNA, Gln-tRNA, Cys-tRNA and Sec-tRNA) are made by synthesizing the amino acid on the tRNA by first attaching a non-cognate amino acid to the tRNA, which is then converted to the cognate one catalyzed by tRNA-dependent modifying enzymes. Asn-tRNA or Gln-tRNA formation in most prokaryotes requires amidation of Asp-tRNA or Glu-tRNA by amidotransferases that couple an amidase or an asparaginase to liberate ammonia with a tRNA-dependent kinase. Both archaeal and eukaryotic Sec-tRNA biosynthesis and Cys-tRNA synthesis in methanogens require O-phosophoseryl-tRNA formation. For tRNA-dependent Cys biosynthesis, O-phosphoseryl-tRNA synthetase directly attaches the amino acid to the tRNA which is then converted to Cys by Sep-tRNA: Cys-tRNA synthase. In Sec-tRNA synthesis, O-phosphoseryl-tRNA kinase phosphorylates Ser-tRNA to form the intermediate which is then modified to Sec-tRNA by Sep-tRNA:Sec-tRNA synthase. Complex formation between enzymes in the same pathway may protect the fidelity of protein synthesis. How these tRNA-dependent amino acid biosynthetic routes are integrated into overall metabolism may explain why they are still retained in so many organisms.

[1]  D. Söll,et al.  Gln-tRNAGln Formation from Glu-tRNAGln Requires Cooperation of an Asparaginase and a Glu-tRNAGln Kinase* , 2005, Journal of Biological Chemistry.

[2]  A. Wlodawer,et al.  A covalently bound catalytic intermediate in Escherichia coli asparaginase : Crystal structure of a Thr‐89‐Val mutant , 1996, FEBS letters.

[3]  O. Nureki,et al.  Structural insights into RNA-dependent eukaryal and archaeal selenocysteine formation , 2007, Nucleic acids research.

[4]  V. Gladyshev,et al.  Selenocysteine incorporation machinery and the role of selenoproteins in development and health. , 2006, Progress in nucleic acid research and molecular biology.

[5]  E Westhof,et al.  Solution structure of selenocysteine-inserting tRNA(Sec) from Escherichia coli. Comparison with canonical tRNA(Ser). , 1993, Journal of molecular biology.

[6]  Dieter Söll,et al.  tRNA-dependent asparagine formation , 1996, Nature.

[7]  S. Bernhard,et al.  Metabolite transfer via enzyme-enzyme complexes. , 1986, Science.

[8]  P. Chuawong,et al.  Novel tRNA aminoacylation mechanisms. , 2007, Molecular bioSystems.

[9]  Robert H. White The biosynthesis of cysteine and homocysteine in Methanococcus jannaschii. , 2003, Biochimica et biophysica acta.

[10]  Hubert Dominique Becker,et al.  The transamidosome: a dynamic ribonucleoprotein particle dedicated to prokaryotic tRNA-dependent asparagine biosynthesis. , 2007, Molecular cell.

[11]  M. Strauch,et al.  Characterization of the glutamyl-tRNA(Gln)-to-glutaminyl-tRNA(Gln) amidotransferase reaction of Bacillus subtilis , 1988, Journal of bacteriology.

[12]  D. Söll,et al.  The selenocysteine-inserting opal suppressor serine tRNA from E. coli is highly unusual in structure and modification. , 1989, Nucleic acids research.

[13]  G. Schneider,et al.  The manifold of vitamin B6 dependent enzymes. , 2000, Structure.

[14]  V. Gladyshev,et al.  Selenophosphate synthetase 2 is essential for selenoprotein biosynthesis , 2006, The Biochemical journal.

[15]  D. Söll,et al.  Saccharomyces cerevisiae imports the cytosolic pathway for Gln‐tRNA synthesis into the mitochondrion , 2005, Genes & development.

[16]  R. White,et al.  Transsulfuration in archaebacteria , 1991, Journal of bacteriology.

[17]  D. Söll,et al.  Coevolution of an aminoacyl-tRNA synthetase with its tRNA substrates , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[18]  K. Ishikawa,et al.  A novel O‐phospho‐L‐serine sulfhydrylation reaction catalyzed by O‐acetylserine sulfhydrylase from Aeropyrum pernix K1 , 2003, FEBS letters.

[19]  D. Söll,et al.  Cysteine Biosynthesis Pathway in the ArchaeonMethanosarcina barkeri Encoded by Acquired Bacterial Genes? , 2000, Journal of bacteriology.

[20]  M. Mirande,et al.  Evolution of the Glx-tRNA synthetase family: the glutaminyl enzyme as a case of horizontal gene transfer. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[21]  T. Steitz,et al.  Toward understanding phosphoseryl-tRNACys formation: The crystal structure of Methanococcus maripaludis phosphoseryl-tRNA synthetase , 2007, Proceedings of the National Academy of Sciences.

[22]  A. Böck,et al.  Selenocysteine: the 21st amino acid , 1991, Molecular microbiology.

[23]  M. Rayman,et al.  The importance of selenium to human health , 2000, The Lancet.

[24]  Structural compensation in an archaeal selenocysteine transfer RNA. , 1999, Journal of molecular biology.

[25]  Département de Biochimie,et al.  A single glutamyl-tRNA synthetase aminoacylates tRNAGlu and tRNAGln in Bacillus subtilis and efficiently misacylates Escherichia coli tRNAGln1 in vitro , 1986, Journal of bacteriology.

[26]  Dieter Söll,et al.  The Helicobacter pylori Amidotransferase GatCAB Is Equally Efficient in Glutamine-dependent Transamidation of Asp-tRNAAsn and Glu-tRNAGln* , 2007, Journal of Biological Chemistry.

[27]  J. Hurwitz,et al.  The enzymatic phosphorylation of ribonucleic acid and deoxyribonucleic acid. II. Further properties of the 5'-hydroxyl polynucleotide kinase. , 1966, The Journal of biological chemistry.

[28]  H. Gross,et al.  The long extra arms of human tRNA((Ser)Sec) and tRNA(Ser) function as major identify elements for serylation in an orientation-dependent, but not sequence-specific manner. , 1993, Nucleic acids research.

[29]  R. Giegé,et al.  Deinococcus glutaminyl-tRNA synthetase is a chimer between proteins from an ancient and the modern pathways of aminoacyl-tRNA formation , 2007, Nucleic acids research.

[30]  V. Gladyshev,et al.  Selenocysteine-containing proteins in mammals. , 1999, Journal of biomedical science.

[31]  O. Uhlenbeck,et al.  The tRNA Specificity of Thermus thermophilus EF-Tu , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[32]  N. Moran,et al.  Aphid Thermal Tolerance Is Governed by a Point Mutation in Bacterial Symbionts , 2007, PLoS biology.

[33]  Liang Feng,et al.  Structural Basis of RNA-Dependent Recruitment of Glutamine to the Genetic Code , 2006, Science.

[34]  Rainer Merkl,et al.  The genome sequence of the extreme thermophile Thermus thermophilus , 2004, Nature Biotechnology.

[35]  P. Chuawong,et al.  A thin-layer electrophoretic assay for Asp-tRNAAsn/Glu-tRNAGln amidotransferase. , 2007, Analytical biochemistry.

[36]  T. Fox,et al.  PET112, a Saccharomyces cerevisiae nuclear gene required to maintain rho+ mitochondrial DNA , 1994, Current Genetics.

[37]  Dieter Söll,et al.  RNA-dependent conversion of phosphoserine forms selenocysteine in eukaryotes and archaea , 2006, Proceedings of the National Academy of Sciences.

[38]  D. Söll,et al.  Methanothermobacter thermautotrophicus tRNAGln confines the amidotransferase GatCAB to asparaginyl-tRNAAsn formation , 2008 .

[39]  Zaida Luthey-Schulten,et al.  Evolutionary profiles derived from the QR factorization of multiple structural alignments gives an economy of information. , 2005, Journal of molecular biology.

[40]  D. Söll,et al.  The heterotrimeric Thermus thermophilus Asp‐tRNAAsn amidotransferase can also generate Gln‐tRNAGln , 2000, FEBS letters.

[41]  R. Wilson,et al.  Genomic and metabolic adaptations of Methanobrevibacter smithii to the human gut , 2007, Proceedings of the National Academy of Sciences.

[42]  S. Cusack Aminoacyl-tRNA synthetases , 1993 .

[43]  H. Gross,et al.  The length and the secondary structure of the D‐stem of human selenocysteine tRNA are the major identity determinants for serine phosphorylation. , 1994, The EMBO journal.

[44]  R Giegé,et al.  Existence of two distinct aspartyl-tRNA synthetases in Thermus thermophilus. Structural and biochemical properties of the two enzymes. , 1997, Biochemistry.

[45]  A. Böck,et al.  In vitro synthesis of selenocysteinyl-tRNA(UCA) from seryl-tRNA(UCA): involvement and characterization of the selD gene product. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[46]  D. Söll,et al.  A Single Amidotransferase Forms Asparaginyl-tRNA and Glutaminyl-tRNA in Chlamydia trachomatis * , 2001, The Journal of Biological Chemistry.

[47]  D. Söll,et al.  Divergence of selenocysteine tRNA recognition by archaeal and eukaryotic O-phosphoseryl-tRNASec kinase , 2008, Nucleic acids research.

[48]  M. Wilcox Gamma-phosphoryl ester of glu-tRNA-GLN as an intermediate in Bacillus subtilis glutaminyl-tRNA synthesis. , 1969, Cold Spring Harbor symposia on quantitative biology.

[49]  M. Stanzel,et al.  Discrimination against misacylated tRNA by chloroplast elongation factor Tu. , 1994, European journal of biochemistry.

[50]  E. Westhof,et al.  Unique secondary and tertiary structural features of the eucaryotic selenocysteine tRNA(Sec). , 1993, Nucleic acids research.

[51]  M. Wilcox,et al.  Transfer RNA as a cofactor coupling amino acid synthesis with that of protein. , 1968, Proceedings of the National Academy of Sciences of the United States of America.

[52]  Yudong D. He,et al.  Functional Discovery via a Compendium of Expression Profiles , 2000, Cell.

[53]  E Westhof,et al.  The 9/4 secondary structure of eukaryotic selenocysteine tRNA: more pieces of evidence. , 1998, RNA.

[54]  Jack F Kirsch,et al.  Pyridoxal phosphate enzymes: mechanistic, structural, and evolutionary considerations. , 2003, Annual review of biochemistry.

[55]  H. Fukuhara,et al.  Yeast mitochondrial DNA specifies tRNA for 19 amino acids. Deletion mapping of the tRNA genes. , 1977, Biochemistry.

[56]  W. F. Fricke,et al.  The Genome Sequence of Methanosphaera stadtmanae Reveals Why This Human Intestinal Archaeon Is Restricted to Methanol and H2 for Methane Formation and ATP Synthesis , 2006, Journal of bacteriology.

[57]  D. Söll,et al.  Protein Synthesis in Escherichia coli with Mischarged tRNA , 2003, Journal of bacteriology.

[58]  M. Jaskólski,et al.  Crystal structure of Escherichia coli L-asparaginase, an enzyme used in cancer therapy. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[59]  W. Foster Structural elements defining elongation factor Tu mediated suppression of codon ambiguity , 2006, Nucleic acids research.

[60]  T. Steitz,et al.  Insights into editing from an ile-tRNA synthetase structure with tRNAile and mupirocin. , 1999, Science.

[61]  C. Kurland,et al.  Co-variation of tRNA abundance and codon usage in Escherichia coli at different growth rates. , 1996, Journal of molecular biology.

[62]  Detlef D. Leipe,et al.  Evolution and classification of P-loop kinases and related proteins. , 2003, Journal of molecular biology.

[63]  T. Stewart,et al.  The characterization of phosphoseryl tRNA from lactating bovine mammary gland. , 1977, Nucleic acids research.

[64]  D. J. Nelson,et al.  Mutagenesis and mechanism-based inhibition of Streptococcus pyogenes Glu-tRNAGln amidotransferase implicate a serine-based glutaminase site. , 2002, Biochemistry.

[65]  T. Steitz,et al.  Structure of pyrrolysyl-tRNA synthetase, an archaeal enzyme for genetic code innovation , 2007, Proceedings of the National Academy of Sciences.

[66]  V. Gladyshev,et al.  Structure and Catalytic Mechanism of Eukaryotic Selenocysteine Synthase* , 2008, Journal of Biological Chemistry.

[67]  D. Söll,et al.  Biosynthesis of Phosphoserine in the Methanococcales , 2006, Journal of bacteriology.

[68]  K. Ishikawa,et al.  Characterization of a Novel Thermostable O-Acetylserine Sulfhydrylase from Aeropyrum pernix K1 , 2003, Journal of bacteriology.

[69]  A. Sibler,et al.  The Primary Structure of tRNAs and Their Rare Nucleosides , 1979 .

[70]  I. Anderson,et al.  Cysteinyl-tRNA synthetase is not essential for viability of the archaeon Methanococcus maripaludis , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[71]  M. Wilcox Gamma-glutamyl phosphate attached to glutamine-specific tRNA. A precursor of glutaminyl-tRNA in Bacillus subtilis. , 1969, European journal of biochemistry.

[72]  H. de Reuse,et al.  A noncognate aminoacyl-tRNA synthetase that may resolve a missing link in protein evolution , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[73]  D. Söll,et al.  Cysteinyl‐tRNA formation: the last puzzle of aminoacyl‐tRNA synthesis , 1999, FEBS letters.

[74]  D. Söll,et al.  A dual‐specific Glu‐tRNAGln and Asp‐tRNAAsn amidotransferase is involved in decoding glutamine and asparagine codons in Acidithiobacillus ferrooxidans , 2001, FEBS letters.

[75]  Elias S. J. Arnér,et al.  Selenocysteine in proteins-properties and biotechnological use. , 2005, Biochimica et biophysica acta.

[76]  P. Mäenpää,et al.  A specific hepatic transfer RNA for phosphoserine. , 1970, Proceedings of the National Academy of Sciences of the United States of America.

[77]  D. Söll,et al.  Emergence of the universal genetic code imprinted in an RNA record , 2006, Proceedings of the National Academy of Sciences.

[78]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[79]  R. Guigó,et al.  Characterization of Mammalian Selenoproteomes , 2003, Science.

[80]  F. Cramer,et al.  Site of aminoacylation of tRNAs from Escherichia coli with respect to the 2'- or 3'-hydroxyl group of the terminal adenosine. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[81]  R. E. Huber,et al.  Comparison of the chemical properties of selenocysteine and selenocystine with their sulfur analogs. , 1967, Archives of biochemistry and biophysics.

[82]  V. Gladyshev,et al.  Biosynthesis of Selenocysteine on Its tRNA in Eukaryotes , 2006, PLoS biology.

[83]  Atsushi Hashimoto,et al.  Purification and properties of suppressor seryl‐tRNA:ATP phosphotransferase from bovine liver , 1984, FEBS letters.

[84]  W. Leinfelder,et al.  Gene for a novel tRNA species that accepts L-serine and cotranslationally inserts selenocysteine , 1988, Nature.

[85]  D. Tempest,et al.  Influence of environment on the content and composition of microbial free amino acid pools. , 1970, Journal of general microbiology.

[86]  A. Beggs,et al.  Selenoproteins and their impact on human health through diverse physiological pathways. , 2006, Physiology.

[87]  D. Béchard,et al.  Utilization of Selenocysteine by a Cysteinyl-tRNA Synthetase from Phaseolus aureus. , 1976, Plant physiology.

[88]  A. Böck,et al.  Eukaryotic selenocysteine inserting tRNA species support selenoprotein synthesis in Escherichia coli. , 1994, Nucleic acids research.

[89]  Yan Zhang,et al.  Dynamic evolution of selenocysteine utilization in bacteria: a balance between selenoprotein loss and evolution of selenocysteine from redox active cysteine residues , 2006, Genome Biology.

[90]  D. Söll,et al.  Characterization and evolutionary history of an archaeal kinase involved in selenocysteinyl-tRNA formation , 2008, Nucleic acids research.

[91]  D. Söll,et al.  Protein biosynthesis in organelles requires misaminoacylation of tRNA , 1988, Nature.

[92]  D. Söll,et al.  Methanothermobacter thermautotrophicus tRNA Gln confines the amidotransferase GatCAB to asparaginyl-tRNA Asn formation. , 2008, Journal of molecular biology.

[93]  G. Church,et al.  Complete genome sequence of Methanobacterium thermoautotrophicum deltaH: functional analysis and comparative genomics , 1997, Journal of bacteriology.

[94]  I. Tanaka,et al.  Ammonia Channel Couples Glutaminase with Transamidase Reactions in GatCAB , 2006, Science.

[95]  O. Uhlenbeck,et al.  Uniform Binding of Aminoacyl-tRNAs to Elongation Factor Tu by Thermodynamic Compensation , 2001, Science.

[96]  P. H. Roy,et al.  Direct Glutaminyl-tRNA Biosynthesis and Indirect Asparaginyl-tRNA Biosynthesis in Pseudomonas aeruginosa PAO1 , 2004, Journal of bacteriology.

[97]  H. Becker,et al.  Thermus thermophilus: a link in evolution of the tRNA-dependent amino acid amidation pathways. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[98]  Massimo Di Giulio,et al.  The origin of the genetic code: theories and their relationships, a review. , 2005 .

[99]  Dieter Söll,et al.  Transfer RNA-dependent amino acid biosynthesis: An essential route to asparagine formation , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[100]  D. Söll,et al.  On the evolution of the tRNA-dependent amidotransferases, GatCAB and GatDE. , 2008, Journal of molecular biology.

[101]  J. Ferry,et al.  O-Acetylserine Sulfhydrylase fromMethanosarcina thermophila , 2000, Journal of bacteriology.

[102]  Dieter Söll,et al.  Domain-specific recruitment of amide amino acids for protein synthesis , 2000, Nature.

[103]  H. Burd,et al.  Abundance of 4Fe-4S motifs in the genomes of methanogens and other prokaryotes. , 2004, FEMS microbiology letters.

[104]  S. Salzberg,et al.  Genome sequence of the radioresistant bacterium Deinococcus radiodurans R1. , 1999, Science.

[105]  D. Hatfield,et al.  Selenium induces changes in the selenocysteine tRNA[Ser]Sec population in mammalian cells. , 1991, Nucleic acids research.

[106]  A. Böck,et al.  Selenocysteine synthase from Escherichia coli. Analysis of the reaction sequence. , 1991, The Journal of biological chemistry.

[107]  H. Becker,et al.  When contemporary aminoacyl-tRNA synthetases invent their cognate amino acid metabolism , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[108]  J. Ferry,et al.  Cysteine biosynthesis in the Archaea: Methanosarcina thermophila utilizes O-acetylserine sulfhydrylase. , 2000, FEMS microbiology letters.

[109]  H. Becker,et al.  Thermus thermophilus contains an eubacterial and an archaebacterial aspartyl-tRNA synthetase. , 2000, Biochemistry.

[110]  Massimo Di Giulio,et al.  The origin of the genetic code: theories and their relationships, a review. , 2005, Bio Systems.

[111]  Roderick MacKinnon,et al.  Energetic optimization of ion conduction rate by the K+ selectivity filter , 2001, Nature.

[112]  R. Fleischmann,et al.  Complete Genome Sequence of the Methanogenic Archaeon, Methanococcus jannaschii , 1996, Science.

[113]  C. Woese,et al.  The evolutionary history of Cys-tRNACys formation. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[114]  Gary J. Olsen,et al.  Aminoacyl-tRNA Synthetases, the Genetic Code, and the Evolutionary Process , 2000, Microbiology and Molecular Biology Reviews.

[115]  Darren A. Natale,et al.  The complete genome of hyperthermophile Methanopyrus kandleri AV19 and monophyly of archaeal methanogens , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[116]  A. Böck,et al.  The function of selenocysteine synthase and SELB in the synthesis and incorporation of selenocysteine. , 1991, Biochimie.

[117]  K. Forchhammer Glutamine signalling in bacteria. , 2007, Frontiers in bioscience : a journal and virtual library.

[118]  G. Kryukov,et al.  Identification and characterization of phosphoseryl-tRNA[Ser]Sec kinase. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[119]  Zaida Luthey-Schulten,et al.  On the Evolution of Structure in Aminoacyl-tRNA Synthetases , 2003, Microbiology and Molecular Biology Reviews.

[120]  N. Stange-thomann,et al.  A nuclear genetic lesion affecting Saccharomyces cerevisiae mitochondrial translation is complemented by a homologous Bacillus gene , 1997, Journal of bacteriology.

[121]  Y. Luo,et al.  Mechanistic studies of reaction coupling in Glu-tRNAGln amidotransferase. , 2001, Biochemistry.

[122]  A. Böck,et al.  The formation of diselenide bridges in proteins by incorporation of selenocysteine residues: biosynthesis and characterization of (Se)2-thioredoxin. , 1994, Biochemistry.

[123]  D. Söll,et al.  The unusual methanogenic seryl-tRNA synthetase recognizes tRNASer species from all three kingdoms of life. , 2004, European journal of biochemistry.

[124]  M. Rodnina,et al.  Structural and functional investigation of a putative archaeal selenocysteine synthase. , 2005, Biochemistry.

[125]  L. Lebioda,et al.  Reactions of Pseudomonas 7A glutaminase-asparaginase with diazo analogues of glutamine and asparagine result in unexpected covalent inhibitions and suggests an unusual catalytic triad Thr-Tyr-Glu. , 2000, Biochemistry.

[126]  D G Vassylyev,et al.  Enzyme structure with two catalytic sites for double-sieve selection of substrate. , 1998, Science.

[127]  O. Nureki,et al.  Features of Aminoacyl-tRNA Synthesis Unique to Archaea , 2007 .

[128]  P. Chuawong,et al.  The nondiscriminating aspartyl-tRNA synthetase from Helicobacter pylori: anticodon-binding domain mutations that impact tRNA specificity and heterologous toxicity. , 2006, Biochemistry.

[129]  Y. Mechulam,et al.  Structural basis for tRNA-dependent amidotransferase function. , 2005, Structure.

[130]  A. Böck,et al.  Identification and characterisation of the selenocysteine-specific translation factor SelB from the archaeon Methanococcus jannaschii. , 2000, Journal of molecular biology.

[131]  R. Fleischmann,et al.  The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus , 1997, Nature.

[132]  D. Söll,et al.  Aminoacyl-tRNA synthesis: divergent routes to a common goal. , 1997, Trends in biochemical sciences.

[133]  T. Mizutani,et al.  Purification and properties of bovine liver seryl-tRNA synthetase. , 1984, European journal of biochemistry.

[134]  I. I. Kaiser,et al.  Aminoacylation of Escherichia coli cysteine tRNA by selenocysteine. , 1975, Archives of biochemistry and biophysics.

[135]  R. Cavicchioli Archaea Molecular and Cellular Biology , 2007 .

[136]  Shigeyuki Yokoyama,et al.  Structural insights into the second step of RNA-dependent cysteine biosynthesis in archaea: crystal structure of Sep-tRNA:Cys-tRNA synthase from Archaeoglobus fulgidus. , 2007, Journal of molecular biology.

[137]  A. Böck,et al.  Escherichia coli genes whose products are involved in selenium metabolism , 1988, Journal of bacteriology.

[138]  D. Söll,et al.  Aminoacyl-tRNA synthesis. , 2000, Annual review of biochemistry.

[139]  D. Söll,et al.  Co‐evolution of the archaeal tRNA‐dependent amidotransferase GatCAB with tRNAAsn , 2007, FEBS letters.

[140]  A. Böck,et al.  Selenocysteine synthase from Escherichia coli. Nucleotide sequence of the gene (selA) and purification of the protein. , 1991, The Journal of biological chemistry.

[141]  A. Sonenshein,et al.  Control of key metabolic intersections in Bacillus subtilis , 2007, Nature Reviews Microbiology.

[142]  A single tRNA base pair mediates bacterial tRNA-dependent biosynthesis of asparagine , 2006, Nucleic acids research.

[143]  G. Kryukov,et al.  The prokaryotic selenoproteome , 2004, EMBO reports.

[144]  Shigeyuki Yokoyama,et al.  Structural insights into the first step of RNA-dependent cysteine biosynthesis in archaea , 2007, Nature Structural &Molecular Biology.

[145]  D. Söll,et al.  Purification and functional characterization of the Glu-tRNA(Gln) amidotransferase from Chlamydomonas reinhardtii. , 1990, The Journal of biological chemistry.

[146]  B. Oh,et al.  Characterization of a Novel Ser-cisSer-Lys Catalytic Triad in Comparison with the Classical Ser-His-Asp Triad* , 2003, Journal of Biological Chemistry.

[147]  A Wlodawer,et al.  Structural basis for the activity and substrate specificity of Erwinia chrysanthemi L-asparaginase. , 2001, Biochemistry.

[148]  M. Wilcox γ-Glutamyl Phosphate Attached to Glutamine-Specific tRNA , 1969 .

[149]  D. Söll,et al.  Glutamyl-tRNA(Gln) amidotransferase in Deinococcus radiodurans may be confined to asparagine biosynthesis. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[150]  J. Yates,et al.  RNA-Dependent Cysteine Biosynthesis in Archaea , 2005, Science.

[151]  D. Söll,et al.  Glu-tRNAGln amidotransferase: a novel heterotrimeric enzyme required for correct decoding of glutamine codons during translation. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[152]  D. Jahn,et al.  Mechanism of a GatCAB amidotransferase: aspartyl-tRNA synthetase increases its affinity for Asp-tRNA(Asn) and novel aminoacyl-tRNA analogues are competitive inhibitors. , 2007, Biochemistry.

[153]  N. Esaki,et al.  Bacterial cysteine desulfurases: their function and mechanisms , 2002, Applied Microbiology and Biotechnology.