Self-Organising Map for Data Imputation and Correction in Surveys
暂无分享,去创建一个
[1] Volker Tresp,et al. Training Neural Networks with Deficient Data , 1993, NIPS.
[2] Yoshua Bengio,et al. Recurrent Neural Networks for Missing or Asynchronous Data , 1995, NIPS.
[3] Klaus Schulten,et al. Topology-conserving maps for learning visuo-motor-coordination , 1989, Neural Networks.
[4] Peter Vamplew,et al. Techniques for Dealing with Missing Values in Feedforward Networks , 1996 .
[5] Sankar K. Pal,et al. Fuzzy multi-layer perceptron, inferencing and rule generation , 1995, IEEE Trans. Neural Networks.
[6] Fionn Murtagh,et al. Data Imputation and Nowcasting in the Environmental Sciences Using Clustering and Connectionist Modelling , 1998, COMPSTAT.
[7] Smaïl Ibbou. Classification, analyse des correspondances et methodes neuronales , 1998 .
[8] Mariusz Grabowski. Application of Self-Organizing Maps to Outlier Identification and Estimation of Missing Data , 1998 .
[9] C. S. Cox,et al. COMPARISON OF AUTOASSOCIATIVE NEURAL NETWORKS AND KOHONEN MAPS FOR SIGNAL FAILURE DETECTION AND RECONSTRUCTION , 1999 .
[10] Vincent Lorquet. Etude d'un codage semi-distribué adaptatif pour les réseaux multi-couches. Application au diagnostic, à la modélisation et à la commande , 1992 .
[11] S. Nordbotten. Neural network imputation applied to the Norwegian 1990 population census data , 1996 .
[12] Carlos López-Vázquez. Application of ANN to the prediction of missing daily precipitation records, and comparison against linear methodologies 1 , 1997 .
[13] Tariq Samad,et al. Self–organization with partial data , 1992 .
[14] Sophie Midenet,et al. Learning Associations by Self-Organization: The LASSO model , 1994, Neurocomputing.
[15] Yoshua Bengio,et al. Missing Data with Recurrent Networks Handling Asynchronous or Missing Data with Recurrent Networks , 1998 .
[16] Teuvo Kohonen,et al. Self-Organizing Maps , 2010 .
[17] Y. Idan,et al. Handwritten digits recognition by a supervised Kohonen-like learning algorithm , 1991, [Proceedings] 1991 IEEE International Joint Conference on Neural Networks.