Analysis of precipitates from reactions of hyperalkaline solutions with soluble silica

[1]  M. Flury,et al.  Colloid formation in Hanford sediments reacted with simulated tank waste. , 2004, Environmental science & technology.

[2]  J. Szecsody,et al.  Transport-controlled kinetics of dissolution and precipitation in the sediments under alkaline and saline conditions , 2004 .

[3]  M. Flury,et al.  Alteration of Kaolinite to Cancrinite and Sodalite by Simulated Hanford Tank Waste and its Impact on Cesium Retention , 2004 .

[4]  D. Bish,et al.  Aluminum effect on dissolution and precipitation under hyperalkaline conditions: II. Solid phase transformations. , 2003, Journal of environmental quality.

[5]  J. Szecsody,et al.  Aluminum effect on dissolution and precipitation under hyperalkaline conditions: I. Liquid phase transformations. , 2003, Journal of environmental quality.

[6]  Xu Wang,et al.  Study of the reaction of tetramethyltin with H-faujasite. Characterization of the grafted species and thermal stability , 2003 .

[7]  K. Mueller,et al.  Linking cesium and strontium uptake to kaolinite weathering in simulated tank waste leachate. , 2003, Environmental science & technology.

[8]  M. Flury,et al.  In situ mobilization of colloids and transport of cesium in Hanford sediments. , 2002, Environmental science & technology.

[9]  P. Pernice,et al.  FTIR study of the thermal transformation of barium-exchanged zeolite A to celsian , 2002 .

[10]  Christopher F. Brown,et al.  Characterization of Vadose Zone Sediment: Uncontaminated RCRA Borehole Core Samples and Composite Samples , 2002 .

[11]  S. Rayalu,et al.  Highly crystalline Zeolite-A from flyash of bituminous and lignite coal combustion. , 2001, Journal of hazardous materials.

[12]  K. L. Nagy,et al.  Nitrate-cancrinite precipitation on quartz sand in simulated Hanford tank solutions. , 2001, Environmental science & technology.

[13]  James R. Rustad,et al.  An Aqueous Thermodynamic Model for Polymerized Silica Species to High Ionic Strength , 2001 .

[14]  S. Dann,et al.  Investigation of zeolite scales formed in the Bayer process , 2000 .

[15]  M. Fechtelkord,et al.  Synthesis, X-ray diffraction and MAS NMR characteristics of nitrate cancrinite Na7.6[AlSiO4]6(NO3)1.6(H2O)2 , 2000 .

[16]  M. Weller,et al.  The synthesis and characterisation of JBW-type zeolites:Part B: Sodium/rubidium aluminogermanate, Na2Rb[Al3Ge3O12]·H2O , 2000 .

[17]  M. Weller,et al.  The synthesis and characterisation of JBW-type zeolites: Part A: Sodium/potassium aluminosilicate, Na2K[Al3Si3O12]·0.5H2O , 2000 .

[18]  N. Heo,et al.  Molten-salt method for the synthesis of zeolitic materials. I. Zeolite formation in alkaline molten-salt system , 2000 .

[19]  Jonas Addai-Mensah,et al.  The mechanism of the sodalite-to-cancrinite phase transformation in synthetic spent Bayer liquor , 1999 .

[20]  Peter Englezos,et al.  Thermodynamic Modeling of Sodium Aluminosilicate Formation in Aqueous Alkaline Solutions , 1999 .

[21]  M. Fechtelkord,et al.  Synthesis and crystal structure of carbonate cancrinite Na8[AlSiO4]6CO3(H2O)3.4, grown under low-temperature hydrothermal conditions , 1999 .

[22]  D. Kaplan,et al.  Effects of Aging Quartz Sand and Hanford Site Sediment with Sodium Hydroxide on Radionuclide Sorption Coefficients and Sediment Physical and Hydrologic Properties: Final Report for Subtask 2a , 1998 .

[23]  M. Fechtelkord,et al.  Crystallization kinetics of Na7.4(AlSiO4)6(CO3)0.7·4H2O, an intermediate phase between cancrinite and sodalite, grown under low temperature hydrothermal conditions , 1998 .

[24]  B. Velde,et al.  Kaolinite transformation in high molar KOH solutions , 1998 .

[25]  John M. Zachara,et al.  Chemical Information on Tank Supernatants, Cs Adsorption From TankLiquids Onto Hanford Sediments, and Field Observations of Cs MigrationFrom Past Tank Leaks , 1998 .

[26]  W. Müller-Warmuth,et al.  The crystallization kinetics of sodalites grown by the hydrothermal transformation of kaolinite studied by 29Si MAS NMR. , 1997, Solid state nuclear magnetic resonance.

[27]  P. Pernice,et al.  Ftir and dta study of lanthanum aluminosilicate glasses , 1997 .

[28]  M. Fechtelkord,et al.  On the synthesis of nitrate enclathrated sodalite in organic solvents , 1997 .

[29]  J. Addai-Mensah,et al.  The influence of sodium carbonate on sodium aluminosilicate crystallisation and solubility in sodium aluminate solutions , 1997 .

[30]  Andrea R. Gerson,et al.  Bayer process plant scale: transformation of sodalite to cancrinite , 1997 .

[31]  Josef-Christian Buhl,et al.  Synthesis and crystal structure of nitrate enclathrated sodalite Na8[AlSiO4]6(NO3)2 , 1996 .

[32]  S. Goldberg,et al.  Chemical equilibrium and reaction models , 1995 .

[33]  C. Su,et al.  Sodium and Chloride Sorption by Imogolite and Allophanes , 1992 .

[34]  David J. Wesolowski,et al.  Aluminum speciation and equilibria in aqueous solution: I. The solubility of gibbsite in the system Na-K-Cl-OH-Al(OH)4 from 0 to 100°C , 1992 .

[35]  J.-Ch. Buhl,et al.  The properties of salt-filled sodalites part 2. Synthesis, decomposition reactions and phase transitions of nitrate sodalite Na8[AlSiO4]6(NO3)2 , 1991 .

[36]  P. Sieger,et al.  Orientational disorder of the nitrite anion in the sodalite Na8[AlSiO4]6(NO2)2 , 1991 .

[37]  C. W. Childs,et al.  Structural studies of Silica Springs allophane , 1990, Clay Minerals.

[38]  R. Ikan NMR techniques and applications in geochemistry and soil chemistry , 1988 .

[39]  J. Weare,et al.  A chemical equilibrium algorithm for highly non-ideal multiphase systems: Free energy minimization , 1987 .

[40]  Michael A. Wilson N.M.R. techniques and applications in geochemistry and soil chemistry , 1987 .

[41]  John H. Weare,et al.  The prediction of borate mineral equilibria in natural waters: Application to Searles Lake, California , 1986 .

[42]  E. Oldfield,et al.  Structural studies of imogolite and allophanes by aluminum-27 and silicon-29 nuclear magnetic resonance spectroscopy , 1985 .

[43]  D. Jenkins Water Chemistry, Laboratory Manual , 1980 .

[44]  R. Wyckoff Miscellaneous inorganic compounds, silicates, and basic structural information , 1968 .