Cortical Surface-Based Analysis I. Segmentation and Surface Reconstruction

Several properties of the cerebral cortex, including its columnar and laminar organization, as well as the topographic organization of cortical areas, can only be properly understood in the context of the intrinsic two-dimensional structure of the cortical surface. In order to study such cortical properties in humans, it is necessary to obtain an accurate and explicit representation of the cortical surface in individual subjects. Here we describe a set of automated procedures for obtaining accurate reconstructions of the cortical surface, which have been applied to data from more than 100 subjects, requiring little or no manual intervention. Automated routines for unfolding and flattening the cortical surface are described in a companion paper. These procedures allow for the routine use of cortical surface-based analysis and visualization methods in functional brain imaging.

[1]  Eric L. Schwartz,et al.  Computer-Aided Neuroanatomy: Differential Geometry of Cortical Surfaces and an Optimal Flattening Algorithm , 1986, IEEE Computer Graphics and Applications.

[2]  Manfredo P. do Carmo,et al.  Differential geometry of curves and surfaces , 1976 .

[3]  M. Torrens Co-Planar Stereotaxic Atlas of the Human Brain—3-Dimensional Proportional System: An Approach to Cerebral Imaging, J. Talairach, P. Tournoux. Georg Thieme Verlag, New York (1988), 122 pp., 130 figs. DM 268 , 1990 .

[4]  Tomas Akenine-Möller,et al.  A Fast Triangle-Triangle Intersection Test , 1997, J. Graphics, GPU, & Game Tools.

[5]  Bruce Fischl,et al.  Adaptive Nonlocal Filtering: A Fast Alternative to Anisotropic Diffusion for Image Enhancement , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Eric L. Schwartz,et al.  Computing Minimal Distances on Polyhedral Surfaces , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Christos Davatzikos,et al.  Spatial Transformation and Registration of Brain Images Using Elastically Deformable Models , 1997, Comput. Vis. Image Underst..

[9]  Christos Davatzikos,et al.  Using a deformable surface model to obtain a shape representation of the cortex , 1996, IEEE Trans. Medical Imaging.

[10]  Anders M. Dale,et al.  fMRI constrained linear estimation of cortical activity from MEG measurements: A model study , 2000 .

[11]  H A Drury,et al.  Computational methods for reconstructing and unfolding the cerebral cortex. , 1995, Cerebral cortex.

[12]  Guido Gerig,et al.  Segmentation of 3D Objects from MRI Volume Data Using Constrained Elastic Deformations of Flexible Fourier Surface Models , 1995, CVRMed.

[13]  J. Sethian Level set methods : evolving interfaces in geometry, fluid mechanics, computer vision, and materials science , 1996 .

[14]  A. Dale,et al.  Improved Localizadon of Cortical Activity by Combining EEG and MEG with MRI Cortical Surface Reconstruction: A Linear Approach , 1993, Journal of Cognitive Neuroscience.

[15]  Günter Ewald,et al.  Geometry: an introduction , 1971 .

[16]  A. Yuille Deformable Templates for Face Recognition , 1991, Journal of Cognitive Neuroscience.

[17]  E. DeYoe,et al.  Mapping striate and extrastriate visual areas in human cerebral cortex. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[18]  Eric L. Schwartz,et al.  Computational anatomy and functional architecture of striate cortex: A spatial mapping approach to perceptual coding , 1980, Vision Research.

[19]  A. M. Dale,et al.  A Coordinate System for the Cortical Surface , 1998, NeuroImage.

[20]  Rangachar Kasturi,et al.  Machine vision , 1995 .

[21]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[22]  P. Cavanagh,et al.  Cortical fMRI activation produced by attentive tracking of moving targets. , 1998, Journal of neurophysiology.

[23]  T. M. Talavage,et al.  Preliminary fMRI evidence for tonotopicity in human auditory cortex , 1996, NeuroImage.

[24]  Charles R. Meyer,et al.  Retrospective correction of intensity inhomogeneities in MRI , 1995, IEEE Trans. Medical Imaging.

[25]  J. Sethian Numerical algorithms for propagating interfaces: Hamilton-Jacobi equations and conservation laws , 1990 .

[26]  Edgar M. Housepian Atlas d'anatomie stereotaxique du telencephale. , 1968 .

[27]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[28]  Joachim Weickert,et al.  Recursive Separable Schemes for Nonlinear Diffusion Filters , 1997, Scale-Space.

[29]  Demetri Terzopoulos,et al.  Deformable models in medical image analysis: a survey , 1996, Medical Image Anal..

[30]  A. Dale,et al.  New images from human visual cortex , 1996, Trends in Neurosciences.

[31]  Niklas Nordström,et al.  Biased anisotropic diffusion: a unified regularization and diffusion approach to edge detection , 1990, Image Vis. Comput..

[32]  Eric L. Schwartz,et al.  Computer-aided neuroanatomy of macaque visual cortex , 1993 .

[33]  D. V. van Essen,et al.  Structural and Functional Analyses of Human Cerebral Cortex Using a Surface-Based Atlas , 1997, The Journal of Neuroscience.

[34]  W. Eric L. Grimson,et al.  Adaptive Segmentation of MRI Data , 1995, CVRMed.

[35]  Mark Nitzberg,et al.  Nonlinear Image Filtering with Edge and Corner Enhancement , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[36]  A. Toga,et al.  Three-Dimensional Statistical Analysis of Sulcal Variability in the Human Brain , 1996, The Journal of Neuroscience.

[37]  S. Corkin,et al.  Segregation of Multiple Somatosensory Maps within the Human Postcentral Gyrus Using fMRI , 1998, NeuroImage.

[38]  G. Glover,et al.  Retinotopic organization in human visual cortex and the spatial precision of functional MRI. , 1997, Cerebral cortex.

[39]  D. V. van Essen,et al.  Functional and structural mapping of human cerebral cortex: solutions are in the surfaces. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[40]  J W Belliveau,et al.  Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. , 1995, Science.

[41]  M. Stella Atkins,et al.  Automatic Segmentation of the Brain in MRI , 1996, VBC.

[42]  Guido Gerig,et al.  Vector-Valued Diffusion , 1994, Geometry-Driven Diffusion in Computer Vision.

[43]  J. Kaas,et al.  Architectionis, somatotopic organization, and ipsilateral cortical connections of the primary motor area (M1) of owl monkeys , 1993, The Journal of comparative neurology.

[44]  A. Dale,et al.  The representation of the ipsilateral visual field in human cerebral cortex. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[45]  E. Halgren,et al.  Location of human face‐selective cortex with respect to retinotopic areas , 1999, Human brain mapping.

[46]  Eric L. Schwartz,et al.  A Numerical Solution to the Generalized Mapmaker's Problem: Flattening Nonconvex Polyhedral Surfaces , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[47]  D. Collins,et al.  Automatic 3D Intersubject Registration of MR Volumetric Data in Standardized Talairach Space , 1994, Journal of computer assisted tomography.

[48]  A. Toga,et al.  A SURFACE-BASED TECHNIQUE FOR WARPING 3-DIMENSIONAL IMAGES OF THE BRAIN , 2000 .

[49]  A K Liu,et al.  Spatiotemporal imaging of human brain activity using functional MRI constrained magnetoencephalography data: Monte Carlo simulations. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[50]  A. Dale,et al.  Cortical Surface-Based Analysis II: Inflation, Flattening, and a Surface-Based Coordinate System , 1999, NeuroImage.

[51]  Carl Friedrich Gauss Disquisitiones generales circa superficies curvas , 1981 .

[52]  S. Shipp,et al.  The functional logic of cortical connections , 1988, Nature.

[53]  Alan C. Evans,et al.  Multiple surface identification and matching in magnetic resonance images , 1994, Other Conferences.

[54]  Bruce Fischl,et al.  Learning an Integral Equation Approximation to Nonlinear Anisotropic Diffusion in Image Processing , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[55]  P. Cavanagh,et al.  Retinotopy and color sensitivity in human visual cortical area V8 , 1998, Nature Neuroscience.

[56]  Martin I. Sereno,et al.  Cortical visual areas in mammals , 1991 .

[57]  C. Davatzikos,et al.  A probabilistic ribbon model for shape analysis of the cerebral sulci: application to the central sulcus. , 1998, Journal of computer assisted tomography.

[58]  DavatzikosChristos Spatial Transformation and Registration of Brain Images Using Elastically Deformable Models , 1997 .

[59]  A. Dale,et al.  Functional Analysis of V3A and Related Areas in Human Visual Cortex , 1997, The Journal of Neuroscience.

[60]  Guido Gerig,et al.  Compensation of Spatial Inhomogeneity in MRI Based on a Parametric Bias Estimate , 1996, VBC.

[61]  A. Leventhal The neural basis of visual function , 1991 .

[62]  D. V. Essen,et al.  Analysis and comparison of areal partitioning schemes using two-dimensional fluid deformations , 1996, NeuroImage.

[63]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid , 2012 .

[64]  R. Andersen,et al.  Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[65]  Christopher I. Moore Some principles of somatosensory cortical organization in rats and humans , 1998 .

[66]  Michael I. Miller,et al.  Deformable templates using large deformation kinematics , 1996, IEEE Trans. Image Process..

[67]  Bart M. ter Haar Romeny,et al.  Geometry-Driven Diffusion in Computer Vision , 1994, Computational Imaging and Vision.

[68]  P. Lions,et al.  Image selective smoothing and edge detection by nonlinear diffusion. II , 1992 .

[69]  D. V. van Essen,et al.  Computerized Mappings of the Cerebral Cortex: A Multiresolution Flattening Method and a Surface-Based Coordinate System , 1996, Journal of Cognitive Neuroscience.

[70]  Paul M. Thompson,et al.  A surface-based technique for warping three-dimensional images of the brain , 1996, IEEE Trans. Medical Imaging.

[71]  Tomas Möller,et al.  A fast triangle-triangle intersection test , 1997 .

[72]  A. Dale,et al.  A surface-based coordinate system for a canonical cortex , 1996, NeuroImage.

[73]  A. Dale,et al.  Visual motion aftereffect in human cortical area MT revealed by functional magnetic resonance imaging , 1995, Nature.

[74]  Jean-Claude Pont,et al.  La Topologie algébrique des origines à Poincaré , 1974 .

[75]  B. Everitt,et al.  Computerized Brain Tissue Classification of Magnetic Resonance Images: A New Approach to the Problem of Partial Volume Artifact , 1995, NeuroImage.

[76]  J. Kaas,et al.  Subdivisions and connections of auditory cortex in owl monkeys , 1992, The Journal of comparative neurology.

[77]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[78]  Guillermo Sapiro,et al.  Creating connected representations of cortical gray matter for functional MRI visualization , 1997, IEEE Transactions on Medical Imaging.

[79]  Philippe Saint-Marc,et al.  Adaptive Smoothing: A General Tool for Early Vision , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[80]  Thomas Michael Talavage,et al.  Functional magnetic resonance imaging of the frequency organization of human auditory cortex , 1998 .

[81]  A. M. Dale,et al.  FMRI analysis of human visual cortical area V3A , 1996, NeuroImage.

[82]  D. Louis Collins,et al.  Cortical Constraints for Non-Linear Cortical Registration , 1996, VBC.

[83]  Anders M. Dale,et al.  Representation of motion boundaries in retinotopic human visual cortical areas , 1997, Nature.

[84]  Alan C. Evans,et al.  A method for identifying geometrically simple surfaces from three-dimensional images , 1998 .

[85]  A. Dale,et al.  Functional analysis of primary visual cortex (V1) in humans. , 1998, Proceedings of the National Academy of Sciences of the United States of America.