Computational analysis of riboswitch-based regulation.

[1]  Joy Sinha,et al.  Retraction: Reprogramming bacteria to seek and destroy an herbicide. , 2014, Nature chemical biology.

[2]  C. Dohno,et al.  A synthetic riboswitch that operates using a rationally designed ligand-RNA pair. , 2013, Angewandte Chemie.

[3]  Sean R. Eddy,et al.  Infernal 1.1: 100-fold faster RNA homology searches , 2013, Bioinform..

[4]  M. Saier,et al.  Comparative genomics of metabolic capacities of regulons controlled by cis-regulatory RNA motifs in bacteria , 2013, BMC Genomics.

[5]  Robert T. Batey,et al.  Engineering modular ‘ON’ RNA switches using biological components , 2013, Nucleic acids research.

[6]  Pascale Cossart,et al.  A riboswitch-regulated antisense RNA in Listeria monocytogenes , 2013, Proceedings of the National Academy of Sciences.

[7]  Sean R. Eddy,et al.  Rfam 11.0: 10 years of RNA families , 2012, Nucleic Acids Res..

[8]  E. Merino,et al.  Elucidating metabolic pathways and digging for genes of unknown function in microbial communities: the riboswitch approach. , 2012, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[9]  Joshua K. Michener,et al.  High-throughput enzyme evolution in Saccharomyces cerevisiae using a synthetic RNA switch. , 2012, Metabolic engineering.

[10]  Inna Dubchak,et al.  RegPrecise web services interface: programmatic access to the transcriptional regulatory interactions in bacteria reconstructed by comparative genomics , 2012, Nucleic Acids Res..

[11]  R. Breaker Prospects for riboswitch discovery and analysis. , 2011, Molecular cell.

[12]  R. Breaker,et al.  Challenges of ligand identification for riboswitch candidates , 2011, RNA biology.

[13]  Andrea L Edwards,et al.  Structural basis for recognition of S-adenosylhomocysteine by riboswitches. , 2010, RNA.

[14]  Eric D Brown,et al.  Using a riboswitch sensor to examine coenzyme B(12) metabolism and transport in E. coli. , 2010, Chemistry & biology.

[15]  Zasha Weinberg,et al.  A eubacterial riboswitch class that senses the coenzyme tetrahydrofolate. , 2010, Chemistry & biology.

[16]  Inna Dubchak,et al.  RegPredict: an integrated system for regulon inference in prokaryotes by comparative genomics approach , 2010, Nucleic Acids Res..

[17]  R. Breaker,et al.  Evidence for Widespread Gene Control Function by the ydaO Riboswitch Candidate , 2010, Journal of bacteriology.

[18]  Eric Westhof,et al.  The amazing world of bacterial structured RNAs , 2010, Genome Biology.

[19]  Inna Dubchak,et al.  RegPrecise: a database of curated genomic inferences of transcriptional regulatory interactions in prokaryotes , 2009, Nucleic Acids Res..

[20]  R. Breaker,et al.  Comparative genomics reveals 104 candidate structured RNAs from bacteria, archaea, and their metagenomes , 2010, Genome Biology.

[21]  Pradipta Bandyopadhyay,et al.  Riboswitch Detection Using Profile Hidden Markov Models , 2009, BMC Bioinformatics.

[22]  R. Breaker,et al.  The structural and functional diversity of metabolite-binding riboswitches. , 2009, Annual review of biochemistry.

[23]  Sean R. Eddy,et al.  Infernal 1.0: inference of RNA alignments , 2009, Bioinform..

[24]  W. Winkler,et al.  Expanding roles for metabolite-sensing regulatory RNAs. , 2009, Current opinion in microbiology.

[25]  C. Yanofsky,et al.  Biochemical Features and Functional Implications of the RNA-Based T-Box Regulatory Mechanism , 2009, Microbiology and Molecular Biology Reviews.

[26]  Robert D. Finn,et al.  Rfam: updates to the RNA families database , 2008, Nucleic Acids Res..

[27]  R. Breaker,et al.  Unique glycine-activated riboswitch linked to glycine-serine auxotrophy in SAR11. , 2009, Environmental microbiology.

[28]  Sebastian Will,et al.  RNAalifold: improved consensus structure prediction for RNA alignments , 2008, BMC Bioinformatics.

[29]  P. Burguière,et al.  S-box and T-box riboswitches and antisense RNA control a sulfur metabolic operon of Clostridium acetobutylicum , 2008, Nucleic acids research.

[30]  Enrique Merino,et al.  GeConT 2: gene context analysis for orthologous proteins, conserved domains and metabolic pathways , 2008, Nucleic Acids Res..

[31]  Zasha Weinberg,et al.  The aptamer core of SAM-IV riboswitches mimics the ligand-binding site of SAM-I riboswitches. , 2008, RNA.

[32]  M. Gelfand,et al.  Comparative genomic analysis of T-box regulatory systems in bacteria. , 2008, RNA.

[33]  Jeffrey E. Barrick,et al.  The distributions, mechanisms, and structures of metabolite-binding riboswitches , 2007, Genome Biology.

[34]  Ronald R. Breaker,et al.  Guanine riboswitch variants from Mesoplasma florum selectively recognize 2′-deoxyguanosine , 2007, Proceedings of the National Academy of Sciences.

[35]  Shane J. Neph,et al.  Identification of 22 candidate structured RNAs in bacteria using the CMfinder comparative genomics pipeline , 2007, Nucleic acids research.

[36]  R. Breaker,et al.  Ligand binding and gene control characteristics of tandem riboswitches in Bacillus anthracis. , 2007, RNA.

[37]  Adam Roth,et al.  A riboswitch selective for the queuosine precursor preQ1 contains an unusually small aptamer domain , 2007, Nature Structural &Molecular Biology.

[38]  Groisman,et al.  A Mg 2 +-responding RNA That Controls the Expression of a Mg 2 + Transporter , 2007 .

[39]  A. Ferré-D’Amaré,et al.  Structural Basis of glmS Ribozyme Activation by Glucosamine-6-Phosphate , 2006, Science.

[40]  T. Henkin,et al.  The SMK box is a new SAM-binding RNA for translational regulation of SAM synthetase , 2006, Nature Structural &Molecular Biology.

[41]  Zasha Weinberg,et al.  CMfinder - a covariance model based RNA motif finding algorithm , 2006, Bioinform..

[42]  T. Latifi,et al.  A Mg2+-responding RNA that controls the expression of a Mg2+ transporter. , 2006, Cold Spring Harbor symposia on quantitative biology.

[43]  Zasha Weinberg,et al.  Sequence-based heuristics for faster annotation of non-coding RNA families , 2006, Bioinform..

[44]  R. Breaker,et al.  Regulation of bacterial gene expression by riboswitches. , 2005, Annual review of microbiology.

[45]  S. Altman,et al.  RNase P cleaves transient structures in some riboswitches. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[46]  Jeffrey E. Barrick,et al.  Evidence for a second class of S-adenosylmethionine riboswitches and other regulatory RNA motifs in alpha-proteobacteria , 2005, Genome Biology.

[47]  Enrique Merino,et al.  RibEx: a web server for locating riboswitches and other conserved bacterial regulatory elements , 2005, Nucleic Acids Res..

[48]  Rangarajan Sampath,et al.  Identification of conserved regulatory RNA structures in prokaryotic metabolic pathway genes. , 2005, Bio Systems.

[49]  D. Crothers,et al.  The speed of RNA transcription and metabolite binding kinetics operate an FMN riboswitch. , 2005, Molecular cell.

[50]  W. Winkler Metabolic monitoring by bacterial mRNAs , 2005, Archives of Microbiology.

[51]  Ricardo Ciria,et al.  Conserved regulatory motifs in bacteria: riboswitches and beyond. , 2004, Trends in genetics : TIG.

[52]  R. D'Amato,et al.  Exogenous control of mammalian gene expression through modulation of RNA self-cleavage , 2004, Nature.

[53]  Enrique Merino,et al.  GeConT: gene context analysis , 2004, Bioinform..

[54]  Thomas Dandekar,et al.  Riboswitch finder tool for identification of riboswitch RNAs , 2004, Nucleic Acids Res..

[55]  Jean-Jacques Toulmé,et al.  Regulating eukaryotic gene expression with aptamers , 2004, FEBS letters.

[56]  R. Breaker,et al.  Gene regulation by riboswitches , 2004, Nature Reviews Molecular Cell Biology.

[57]  Jeffrey E. Barrick,et al.  New RNA motifs suggest an expanded scope for riboswitches in bacterial genetic control. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[58]  R. Breaker,et al.  Control of gene expression by a natural metabolite-responsive ribozyme , 2004, Nature.

[59]  Dan Mercola,et al.  A Glycine-Dependent Riboswitch That Uses Cooperative Binding to Control Gene Expression , 2004 .

[60]  Robert D. Finn,et al.  The Pfam protein families database , 2004, Nucleic Acids Res..

[61]  R. Breaker,et al.  Selection in vitro of allosteric ribozymes. , 2004, Methods in molecular biology.

[62]  E. Nudler,et al.  The riboswitch control of bacterial metabolism. , 2004, Trends in biochemical sciences.

[63]  M. Gelfand,et al.  Comparative genomics of the methionine metabolism in Gram-positive bacteria: a variety of regulatory systems. , 2004, Nucleic acids research.

[64]  Zasha Weinberg,et al.  Exploiting conserved structure for faster annotation of non-coding RNAs without loss of accuracy , 2004, ISMB/ECCB.

[65]  M. Gelfand,et al.  Riboswitches: the oldest mechanism for the regulation of gene expression? , 2004, Trends in genetics : TIG.

[66]  M. Gelfand,et al.  Regulation of lysine biosynthesis and transport genes in bacteria: yet another RNA riboswitch? , 2003, Nucleic acids research.

[67]  Margaret S. Ebert,et al.  An mRNA structure in bacteria that controls gene expression by binding lysine. , 2003, Genes & development.

[68]  M. Gelfand,et al.  Comparative Genomics of the Vitamin B12 Metabolism and Regulation in Prokaryotes* , 2003, Journal of Biological Chemistry.

[69]  Ali Nahvi,et al.  An mRNA structure that controls gene expression by binding S-adenosylmethionine , 2003, Nature Structural Biology.

[70]  Andrey A Mironov,et al.  Regulation of the vitamin B12 metabolism and transport in bacteria by a conserved RNA structural element. , 2003, RNA.

[71]  Michael Zuker,et al.  Mfold web server for nucleic acid folding and hybridization prediction , 2003, Nucleic Acids Res..

[72]  Jeffrey E. Barrick,et al.  Riboswitches Control Fundamental Biochemical Pathways in Bacillus subtilis and Other Bacteria , 2003, Cell.

[73]  Vitaly Epshtein,et al.  The riboswitch-mediated control of sulfur metabolism in bacteria , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[74]  Barbara Fink,et al.  Conditional gene expression by controlling translation with tetracycline-binding aptamers. , 2003, Nucleic acids research.

[75]  T. Henkin,et al.  Transcription termination control of the S box system: Direct measurement of S-adenosylmethionine by the leader RNA , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[76]  R. Strichartz What are Distributions , 2003 .

[77]  M. Gelfand,et al.  Comparative Genomics of Thiamin Biosynthesis in Procaryotes , 2002, The Journal of Biological Chemistry.

[78]  Andrew D Ellington,et al.  Group I aptazymes as genetic regulatory switches , 2002, BMC biotechnology.

[79]  R. Breaker,et al.  An mRNA structure that controls gene expression by binding FMN , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[80]  Evgeny Nudler,et al.  Sensing Small Molecules by Nascent RNA A Mechanism to Control Transcription in Bacteria , 2002, Cell.

[81]  Ronald R. Breaker,et al.  Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression , 2002, Nature.

[82]  Ali Nahvi,et al.  Genetic control by a metabolite binding mRNA. , 2002, Chemistry & biology.

[83]  T. Henkin,et al.  tRNA-mediated transcription antitermination in vitro: Codon–anticodon pairing independent of the ribosome , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[84]  M. Gelfand,et al.  Regulation of riboflavin biosynthesis and transport genes in bacteria by transcriptional and translational attenuation. , 2002, Nucleic acids research.

[85]  Sean R. Eddy,et al.  A memory-efficient dynamic programming algorithm for optimal alignment of a sequence to an RNA secondary structure , 2002, BMC Bioinformatics.

[86]  P. Stadler,et al.  Secondary structure prediction for aligned RNA sequences. , 2002, Journal of molecular biology.

[87]  R. Breaker Engineered allosteric ribozymes as biosensor components. , 2002, Current opinion in biotechnology.

[88]  D. Ecker,et al.  RNAMotif, an RNA secondary structure definition and search algorithm. , 2001, Nucleic acids research.

[89]  C. Wilson,et al.  Inducible regulation of the S. cerevisiae cell cycle mediated by an RNA aptamer-ligand complex. , 2001, Bioorganic & medicinal chemistry.

[90]  H. Margalit,et al.  Novel small RNA-encoding genes in the intergenic regions of Escherichia coli , 2001, Current Biology.

[91]  R R Breaker,et al.  Generating new ligand-binding RNAs by affinity maturation and disintegration of allosteric ribozymes. , 2001, RNA.

[92]  R. Breaker,et al.  Immobilized RNA switches for the analysis of complex chemical and biological mixtures , 2001, Nature Biotechnology.

[93]  R. Kadner,et al.  Adenosylcobalamin inhibits ribosome binding to btuB RNA. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[94]  M. Zuker Calculating nucleic acid secondary structure. , 2000, Current opinion in structural biology.

[95]  Graziano Pesole,et al.  PatSearch: a pattern matcher software that finds functional elements in nucleotide and protein sequences and assesses their statistical significance , 2000, Bioinform..

[96]  R R Breaker,et al.  Relationship between internucleotide linkage geometry and the stability of RNA. , 1999, RNA.

[97]  M. Green,et al.  Controlling gene expression in living cells through small molecule-RNA interactions. , 1998, Science.

[98]  Michael Gribskov,et al.  Combining evidence using p-values: application to sequence homology searches , 1998, Bioinform..

[99]  S. Kochhar,et al.  Lysine-induced premature transcription termination in the lysC operon of Bacillus subtilis. , 1996, Microbiology.

[100]  A. Viari,et al.  Palingol: a declarative programming language to describe nucleic acids' secondary structures and to scan sequence database. , 1996, Nucleic acids research.

[101]  R. C. Underwood,et al.  Stochastic context-free grammars for tRNA modeling. , 1994, Nucleic acids research.

[102]  R. Durbin,et al.  RNA sequence analysis using covariance models. , 1994, Nucleic acids research.

[103]  Daniel Gautheret,et al.  An RNA pattern matching program with enhanced performance and portability , 1994, Comput. Appl. Biosci..

[104]  T. Henkin,et al.  tRNA as a positive regulator of transcription antitermination in B. subtilis , 1993, Cell.

[105]  M. Zuker Computer prediction of RNA structure. , 1989, Methods in enzymology.

[106]  Michael Zuker,et al.  Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information , 1981, Nucleic Acids Res..

[107]  I. Tinoco,et al.  Stability of RNA hairpin loops: A6-Cm-U6 , 1973 .

[108]  D. Crothers,et al.  Free energy of imperfect nucleic acid helices. II. Small hairpin loops. , 1973, Journal of molecular biology.

[109]  I Tinoco,et al.  Stability of RNA hairpin loops: A 6 -C m -U 6 . , 1973, Journal of molecular biology.

[110]  I. Tinoco,et al.  Estimation of Secondary Structure in Ribonucleic Acids , 1971, Nature.

[111]  R. Nielsen A conserved RNA structure element involved in the regulation of bacterial riboflavin synthesis genes , 2022 .