Composite laser-pulses spectroscopy for high-accuracy optical clocks: a review of recent progress and perspectives

Probing an atomic resonance without disturbing it is an ubiquitous issue in physics. This problem is critical in high-accuracy spectroscopy or for the next generation of atomic optical clocks. Ultra-high resolution frequency metrology requires sophisticated interrogation schemes and robust protocols handling pulse length errors and residual frequency detuning offsets. This review reports recent progress and perspective in such schemes, using sequences of composite laser-pulses tailored in pulse duration, frequency and phase, inspired by NMR techniques and quantum information processing. After a short presentation of Rabi technique and NMR-like composite pulses allowing efficient compensation of electromagnetic field perturbations to achieve robust population transfers, composite laser-pulses are investigated within Ramsey’s method of separated oscillating fields in order to generate non-linear compensation of probe-induced frequency shifts. Laser-pulses protocols such as hyper-Ramsey, modified hyper-Ramsey, generalized hyper-Ramsey and hybrid schemes as auto-balanced Ramsey spectroscopy are reviewed. These techniques provide excellent protection against both probe induced light-shift perturbations and laser intensity variations. More sophisticated schemes generating synthetic frequency-shifts are presented. They allow to reduce or completely eliminate imperfect correction of probe-induced frequency-shifts even in presence of decoherence due to the laser line-width. Finally, two universal protocols are presented which provide complete elimination of probe-induced frequency shifts in the general case where both decoherence and relaxation dissipation effects are present by using exact analytic expressions for phase-shifts and the clock frequency detuning. These techniques might be applied to atomic, molecular and nuclear frequency metrology, Ramsey-type mass spectrometry as well as precision spectroscopy.

[1]  R. Boudot,et al.  Symmetric autobalanced Ramsey interrogation for high-performance coherent-population-trapping vapor-cell atomic clock , 2018, Applied Physics Letters.

[2]  R. Boudot,et al.  Toward a High-Stability Coherent Population Trapping Cs Vapor-Cell Atomic Clock Using Autobalanced Ramsey Spectroscopy , 2018, Physical Review Applied.

[3]  K. Beloy Hyper-Ramsey spectroscopy with probe laser intensity fluctuations , 2018, 1803.10742.

[4]  T. Skinner Comprehensive solutions to the Bloch equations and dynamical models for open two-level systems , 2018 .

[5]  E. Peik,et al.  Autobalanced Ramsey Spectroscopy. , 2017, Physical review letters.

[6]  J. Kitching,et al.  Generalized Autobalanced Ramsey Spectroscopy of Clock Transitions , 2017, 1712.03365.

[7]  K. Cossel,et al.  Precision Measurement of the Electron's Electric Dipole Moment Using Trapped Molecular Ions. , 2017, Physical review letters.

[8]  V. Yudin,et al.  Universal interrogation protocol with zero probe-field-induced frequency shift for quantum clocks and high-accuracy spectroscopy , 2017, 1702.06433.

[9]  M. Lukin,et al.  Gravitational wave detection with optical lattice atomic clocks , 2016, 1606.01859.

[10]  E. Peik,et al.  Pulse defect immune Ramsey spectroscopy , 2016 .

[11]  E Knill,et al.  Preparation of Entangled States through Hilbert Space Engineering. , 2016, Physical review letters.

[12]  V. Yudin,et al.  Composite pulses in Hyper-Ramsey spectroscopy for the next generation of atomic clocks , 2016, 1603.00381.

[13]  C Sanner,et al.  Single-Ion Atomic Clock with 3×10(-18) Systematic Uncertainty. , 2016, Physical review letters.

[14]  V. Yudin,et al.  Synthetic frequency protocol for Ramsey spectroscopy of clock transitions , 2016, 1602.00331.

[15]  E. Arimondo,et al.  Probe light-shift elimination in generalized hyper-Ramsey quantum clocks , 2015, 1511.04847.

[16]  P. Gill,et al.  Modified hyper-Ramsey methods for the elimination of probe shifts in optical clocks. , 2015, 1510.08144.

[17]  W. Ertmer,et al.  Towards a Mg Lattice Clock: Observation of the ^{1}S_{0}-^{3}P_{0} Transition and Determination of the Magic Wavelength. , 2015, Physical review letters.

[18]  S. Blanchard,et al.  Chemically related 4,5-linked aminoglycoside antibiotics drive subunit rotation in opposite directions , 2015, Nature Communications.

[19]  Light shifts in a pulsed cold-atom coherent-population-trapping clock , 2015 .

[20]  V. Yudin,et al.  Study of field shifts of Ramsey resonances on ultracold atoms and ions , 2015 .

[21]  Nikolay V. Vitanov,et al.  Fault-tolerant Hahn-Ramsey interferometry with pulse sequences of alternating detuning , 2015 .

[22]  V. Yudin,et al.  Generalized hyper-Ramsey resonance with separated oscillating fields , 2015, 1503.02959.

[23]  A. Vutha Optical frequency standards for gravitational wave detection using satellite Doppler velocimetry , 2015, 1501.01870.

[24]  T L Nicholson,et al.  Systematic evaluation of an atomic clock at 2 × 10−18 total uncertainty , 2014, Nature Communications.

[25]  Jun Ye,et al.  Optical atomic clocks , 2014, 1407.3493.

[26]  A. Grossheim,et al.  Precision QEC-value measurement of 23Mg for testing the Cabibbo-Kobayashi-Maskawa matrix unitarity , 2014 .

[27]  E. Arimondo,et al.  Quantum engineering of atomic phase shifts in optical clocks , 2014, 1407.1381.

[28]  X. Mougeot,et al.  Consistent calculation of the screening and exchange effects in allowed β - transitions , 2014 .

[29]  Tim Freegarde,et al.  Composite pulses for interferometry in a thermal cold atom cloud , 2014, 1406.2916.

[30]  S. Glaser,et al.  Concurrently optimized cooperative pulses in robust quantum control: application to broadband Ramsey-type pulse sequence elements , 2014, 1404.4943.

[31]  Michael J. Biercuk,et al.  Robustness of composite pulses to time-dependent control noise , 2014, 1402.5174.

[32]  P. W. Hess,et al.  Order of Magnitude Smaller Limit on the Electric Dipole Moment of the Electron , 2013, Science.

[33]  E. Hinds,et al.  A search for varying fundamental constants using hertz-level frequency measurements of cold CH molecules , 2013, Nature Communications.

[34]  Christian Chardonnet,et al.  Probing weak force-induced parity violation by high-resolution mid-infrared molecular spectroscopy , 2013, 1309.5630.

[35]  A. Ludlow,et al.  An Atomic Clock with 10–18 Instability , 2013, Science.

[36]  V. Yudin,et al.  Generalized ramsey scheme for precision spectroscopy of ultracold atoms and ions: Inclusion of a finite laser line width and spontaneous relaxation of the atomic levels , 2013 .

[37]  P. Schmidt,et al.  Reducing the effect of thermal noise in optical cavities , 2012, 1212.3461.

[38]  Mikio Nakahara,et al.  Concatenated Composite Pulses Compensating Simultaneous Systematic Errors , 2012, 1209.4247.

[39]  V. Yudin,et al.  Generalized Ramsey excitation scheme with suppressed light shift. , 2012, Physical review letters.

[40]  C. Orzel Searching for new physics through atomic, molecular and optical precision measurements , 2012, 1208.4506.

[41]  J. Bohnet,et al.  General formalism for evaluating the impact of phase noise on Bloch vector rotations , 2012, 1207.1688.

[42]  P. Zoller,et al.  Engineered Open Systems and Quantum Simulations with Atoms and Ions , 2012, 1203.6595.

[43]  F. Levi,et al.  Metrological characterization of the pulsed Rb clock with optical detection , 2011, 1111.3450.

[44]  M. Okhapkin,et al.  High-accuracy optical clock based on the octupole transition in 171Yb+. , 2011, Physical review letters.

[45]  Lei Chen,et al.  A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity , 2011, Nature Photonics.

[46]  C. cohen-tannoudji,et al.  Advances in Atomic Physics: An Overview , 2011 .

[47]  William D. Phillips,et al.  Ultracold atoms and precise time standards , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[48]  E. Hinds,et al.  Improved measurement of the shape of the electron , 2011, Nature.

[49]  K. Blaum,et al.  First investigation of phase-shifted Ramsey excitation in Penning trap mass spectrometry , 2011 .

[50]  Hidetoshi Katori,et al.  Optical lattice clocks and quantum metrology , 2011 .

[51]  F. Riehle,et al.  Atomic clocks with suppressed blackbody radiation shift. , 2011, Physical review letters.

[52]  K. Blaum,et al.  Damping effects in Penning trap mass spectrometry , 2011 .

[53]  A. Ludlow,et al.  Making optical atomic clocks more stable with 10-16-level laser stabilization , 2011, 1101.1351.

[54]  Hidetoshi Katori,et al.  Colloquium: Physics of optical lattice clocks , 2010, 1011.4622.

[55]  J. Dalibard,et al.  Colloquium: Artificial gauge potentials for neutral atoms , 2010, 1008.5378.

[56]  Wang Jin,et al.  Coherent Population Trapping-Ramsey Interference in Cold Atoms , 2010 .

[57]  D. Wineland,et al.  Frequency comparison of two high-accuracy Al+ optical clocks. , 2009, Physical review letters.

[58]  F. Riehle,et al.  Hyper-Ramsey spectroscopy of optical clock transitions , 2009, 0910.5948.

[59]  H. Margolis Trapped ion optical clocks , 2009 .

[60]  F. Riehle,et al.  Compensation of field-induced frequency shifts in Ramsey spectroscopy of optical clock transitions , 2009, 0903.3716.

[61]  Tomoya Akatsuka,et al.  Optical lattice clocks with non-interacting bosons and fermions , 2008, 2008 IEEE International Frequency Control Symposium.

[62]  Jun Ye,et al.  Quantum State Engineering and Precision Metrology Using State-Insensitive Light Traps , 2008, Science.

[63]  D. Wineland,et al.  Frequency Ratio of Al+ and Hg+ Single-Ion Optical Clocks; Metrology at the 17th Decimal Place , 2008, Science.

[64]  M. Wilde,et al.  Optical Atomic Clocks , 2019, 2019 URSI Asia-Pacific Radio Science Conference (AP-RASC).

[65]  M. Kretzschmar The Ramsey method in high-precision mass spectrometry with Penning traps: Theoretical foundations , 2007 .

[66]  Jun Ye,et al.  Nuclear spin effects in optical lattice clocks , 2007, 0704.0912.

[67]  S. Bize,et al.  Accuracy evaluation of an optical lattice clock with bosonic atoms. , 2007, Optics letters.

[68]  V. Yudin,et al.  Magic-wave-induced $^1S_0-^3P_0$ transition in even isotopes of alkaline-earth-like atoms , 2007, physics/0701134.

[69]  J. Ye,et al.  Compact, thermal-noise-limited optical cavity for diode laser stabilization at 1x10(-15). , 2006, Optics letters.

[70]  Jun Ye,et al.  Cancellation of stark shifts in optical lattice clocks by use of pulsed Raman and electromagnetically induced transparency techniques. , 2006, Physical review letters.

[71]  E. Riis,et al.  Optical-clock local-oscillator stabilization scheme , 2006 .

[72]  P. Gill Trapped Ion Optical Clocks , 2006 .

[73]  Novosibirsk,et al.  Direct excitation of the forbidden clock transition in neutral 174Yb atoms confined to an optical lattice. , 2005, Physical review letters.

[74]  L. Hollberg,et al.  Magnetic field-induced spectroscopy of forbidden optical transitions with application to lattice-based optical atomic clocks. , 2005, Physical review letters.

[75]  A. Clairon,et al.  High contrast Ramsey fringes with coherent-population-trapping pulses in a double lambda atomic system. , 2005, Physical review letters.

[76]  Irene Marzoli,et al.  Composite pulses for quantum computation with trapped electrons , 2005 .

[77]  Jun Ye,et al.  High-accuracy optical clock via three-level coherence in neutral bosonic 88Sr. , 2004, Physical review letters.

[78]  L. Vandersypen,et al.  NMR techniques for quantum control and computation , 2004, quant-ph/0404064.

[79]  E. Riis,et al.  Optimum measurement strategies for trapped ion optical frequency standards , 2004 .

[80]  Kenji Numata,et al.  Thermal-noise limit in the frequency stabilization of lasers with rigid cavities. , 2004, Physical review letters.

[81]  E. Riis,et al.  Optical Ramsey spectroscopy of a single trapped 88Sr+ ion , 2004 .

[82]  M. Takamoto,et al.  Ultrastable optical clock with neutral atoms in an engineered light shift trap. , 2003, Physical review letters.

[83]  Francesco Petruccione,et al.  The Theory of Open Quantum Systems , 2002 .

[84]  Ac Stark shifts in a two-zone Raman interaction , 2002 .

[85]  F.L. Walls,et al.  Phase modulation with independent cavity-phase control in laser cooled clocks in space , 2001, Proceedings of the 2001 IEEE International Frequncy Control Symposium and PDA Exhibition (Cat. No.01CH37218).

[86]  L. Marmet,et al.  Optical Ramsey spectroscopy and coherence measurements of the clock transition in a single trapped Sr ion , 2000 .

[87]  H. Walther,et al.  Quantum Electrodynamic Shifts of Rydberg Energy Levels between Parallel Metal Plates , 1998 .

[88]  Norman F Ramsey Paper 1.15: "Experiments with Separated Oscillatory Fields and Hydrogen Masers," (Nobel Lecture), N. F. Ramsey, Les Prix Nobel (1989, The Nobel Foundation) and Rev. Mod. Phys.62, 541–552 (1990) , 1998 .

[89]  H. Kluge,et al.  Ramsey technique applied in a Penning trap mass spectrometer , 1992 .

[90]  H. Stroke,et al.  Rotating coordinates and the Ramsey separated oscillating‐field resonance method , 1991 .

[91]  André Clairon,et al.  Ramsey resonance in a zacharias fountain , 1991 .

[92]  N. Ramsey,et al.  Experiments with Separated Oscillatory Fields and Hydrogen Masers , 1990, Science.

[93]  Shaoul Ezekiel,et al.  Ac Stark shifts in a two-zone Raman interaction , 1989 .

[94]  Chu,et al.  rf spectroscopy in an atomic fountain. , 1989, Physical review letters.

[95]  Fritz Riehle,et al.  A Ca optical frequency standard frequency stabilization by means of nonlinear Ramsey resonances , 1989 .

[96]  G. Scoles,et al.  Optical Ramsey fringes with traveling waves , 1984 .

[97]  A. J. Shaka,et al.  Composite pulses with dual compensation , 1983 .

[98]  C. Bordé Density Matrix Equations and Diagrams for High Resolution Non-Linear Laser Spectroscopy: Application to Ramsey Fringes in the Optical Domain , 1983 .

[99]  M. Levitt Symmetrical composite pulse sequences for NMR population inversion. II. Compensation of resonance offset , 1982 .

[100]  Malcolm H. Levitt,et al.  Symmetrical composite pulse sequences for NMR population inversion. I. Compensation of radiofrequency field inhomogeneity , 1982 .

[101]  G. L. Greene Observation of the Bloch-Siegert effect in the Ramsey separated-oscillatory-field technique , 1978 .

[102]  R. Shoemaker Coherent Transient Infrared Spectroscopy , 1978 .

[103]  D. Allen-Booth,et al.  Classical Mechanics 2nd edn , 1974 .

[104]  C. Fabjan,et al.  Resonance-Narrowed-Lamb-Shift Measurement in Hydrogen, n = 3 , 1972 .

[105]  C. Fabjan,et al.  Resonance narrowed lamb shift measurement in hydrogen, n = 3 , 1971 .

[106]  R. Code,et al.  Molecular-Beam Magnetic Resonance Studies of HD and D 2 , 1971 .

[107]  Jon H. Shirley,et al.  Some Causes of Resonant Frequency Shifts in Atomic Beam Machines. I. Shifts Due to Other Frequencies of Excitation , 1963 .

[108]  J. V. L. PARRY,et al.  An Atomic Standard of Frequency and Time Interval: A Cæsium Resonator , 1955, Nature.

[109]  E. T. Jaynes,et al.  MATRIX TREATMENT OF NUCLEAR INDUCTION , 1955 .

[110]  Norman F. Ramsey,et al.  Use of Rotating Coordinates in Magnetic Resonance Problems , 1954 .

[111]  H. B. Silsbee,et al.  Phase Shifts in the Molecular Beam Method of Separated Oscillating Fields , 1951 .

[112]  Norman F. Ramsey,et al.  A Molecular Beam Resonance Method with Separated Oscillating Fields , 1950 .

[113]  H. C. Torrey Transient Nutations in Nuclear Magnetic Resonance , 1949 .

[114]  I. I. Rabi,et al.  Atoms in Variable Magnetic Fields , 1945 .

[115]  I. I. Rabi,et al.  The Molecular Beam Resonance Method for Measuring Nuclear Magnetic Moments The Magnetic Moments of 3 Li 6 , 3 Li 7 and 9 F 19 , 1939 .

[116]  I. Rabi,et al.  A New Method of Measuring Nuclear Magnetic Moment , 1938 .