Multilevel quasi Monte Carlo methods for elliptic PDEs with random field coefficients via fast white noise sampling

When solving partial differential equations with random fields as coefficients the efficient sampling of random field realisations can be challenging. In this paper we focus on the fast sampling of Gaussian fields using quasi-random points in a finite element and multilevel quasi Monte Carlo (MLQMC) setting. Our method uses the SPDE approach combined with a new fast (ML)QMC algorithm for white noise sampling. We express white noise as a wavelet series expansion that we divide in two parts. The first part is sampled using quasi-random points and contains a finite number of terms in order of decaying importance to ensure good QMC convergence. The second part is a correction term which is sampled using standard pseudo-random numbers. We show how the sampling of both terms can be performed in linear time and memory complexity in the number of mesh cells via a supermesh construction, yielding an overall linear cost. Furthermore, our technique can be used to enforce the MLQMC coupling even in the case of non-nested mesh hierarchies. We demonstrate the efficacy of our method with numerical experiments.

[1]  Frances Y. Kuo,et al.  Multilevel Quasi-Monte Carlo methods for lognormal diffusion problems , 2015, Math. Comput..

[2]  Michael B. Giles,et al.  Multilevel quasi-Monte Carlo path simulation , 2009 .

[3]  B. Tapley,et al.  Generalized Random Processes: A Theory and the White Gaussian Process , 1975 .

[4]  David Bolin,et al.  The SPDE approach for Gaussian random fields with general smoothness , 2017 .

[5]  Panayot S. Vassilevski,et al.  A Multilevel, Hierarchical Sampling Technique for Spatially Correlated Random Fields , 2017, SIAM J. Sci. Comput..

[6]  Panayot S. Vassilevski,et al.  Scalable hierarchical PDE sampler for generating spatially correlated random fields using nonmatching meshes , 2017, Numer. Linear Algebra Appl..

[7]  David Bolin,et al.  Numerical solution of fractional elliptic stochastic PDEs with spatial white noise , 2017, IMA Journal of Numerical Analysis.

[8]  P. Whittle ON STATIONARY PROCESSES IN THE PLANE , 1954 .

[9]  Ruth E Baker,et al.  Quasi-Monte Carlo Methods Applied to Tau-Leaping in Stochastic Biological Systems , 2018, Bulletin of Mathematical Biology.

[10]  L. Herrmann,et al.  Multilevel quasi-Monte Carlo integration with product weights for elliptic PDEs with lognormal coefficients , 2019, ESAIM: Mathematical Modelling and Numerical Analysis.

[11]  Rainer Buckdahn,et al.  Monotonicity Methods for White Noise Driven Quasi-Linear SPDEs , 1990 .

[12]  Anders Logg,et al.  Automated Solution of Differential Equations by the Finite Element Method: The FEniCS Book , 2012 .

[13]  Stefan Heinrich,et al.  Multilevel Monte Carlo Methods , 2001, LSSC.

[14]  Patrick E. Farrell,et al.  Galerkin projection of discrete fields via supermesh construction , 2009 .

[15]  A. Owen Randomly Permuted (t,m,s)-Nets and (t, s)-Sequences , 1995 .

[16]  I. Daubechies Orthonormal bases of compactly supported wavelets , 1988 .

[17]  A. Owen Scrambled net variance for integrals of smooth functions , 1997 .

[18]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[19]  Michael B. Giles,et al.  Multilevel Monte Carlo methods , 2013, Acta Numerica.

[20]  Elisabeth Ullmann,et al.  Further analysis of multilevel Monte Carlo methods for elliptic PDEs with random coefficients , 2012, Numerische Mathematik.

[21]  T. Sullivan Introduction to Uncertainty Quantification , 2015 .

[22]  W. Hackbusch,et al.  Hierarchical Matrices: Algorithms and Analysis , 2015 .

[23]  K. A. Cliffe,et al.  Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients , 2011, Comput. Vis. Sci..

[24]  William Gropp,et al.  PETSc Users Manual Revision 3.4 , 2016 .

[25]  Frances Y. Kuo,et al.  Fast random field generation with H-matrices , 2017, Numerische Mathematik.

[26]  A. Owen,et al.  Valuation of mortgage-backed securities using Brownian bridges to reduce effective dimension , 1997 .

[27]  Chris L. Farmer,et al.  Application of Stochastic Partial Differential Equations to Reservoir Property Modelling , 2010 .

[28]  Frances Y. Kuo,et al.  High-dimensional integration: The quasi-Monte Carlo way*† , 2013, Acta Numerica.

[29]  Kristin Kirchner,et al.  Regularity and convergence analysis in Sobolev and Hölder spaces for generalized Whittle–Matérn fields , 2019, Numerische Mathematik.

[30]  Paul Glasserman,et al.  Monte Carlo Methods in Financial Engineering , 2003 .

[31]  Robert Scheichl,et al.  Finite Element Error Analysis of Elliptic PDEs with Random Coefficients and Its Application to Multilevel Monte Carlo Methods , 2013, SIAM J. Numer. Anal..

[32]  A. Wood,et al.  Simulation of Stationary Gaussian Processes in [0, 1] d , 1994 .

[33]  Frances Y. Kuo,et al.  Analysis of Circulant Embedding Methods for Sampling Stationary Random Fields , 2017, SIAM J. Numer. Anal..

[34]  I. Sobol,et al.  Construction and Comparison of High-Dimensional Sobol' Generators , 2011 .

[35]  Frances Y. Kuo,et al.  Constructing Sobol Sequences with Better Two-Dimensional Projections , 2008, SIAM J. Sci. Comput..

[36]  Markus Bachmayr,et al.  Unified Analysis of Periodization-Based Sampling Methods for Matérn Covariances , 2020, SIAM J. Numer. Anal..

[37]  Art B. Owen,et al.  Variance and discrepancy with alternative scramblings , 2002 .

[38]  W. Schachermayer,et al.  Multilevel quasi-Monte Carlo path simulation , 2009 .

[39]  Kiyosi Itô,et al.  Stationary random distributions , 1954 .

[40]  H. Niederreiter,et al.  Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing , 1995 .

[41]  Marie E. Rognes,et al.  Efficient White Noise Sampling and Coupling for Multilevel Monte Carlo with Nonnested Meshes , 2018, SIAM/ASA J. Uncertain. Quantification.

[42]  C. R. Dietrich,et al.  Fast and Exact Simulation of Stationary Gaussian Processes through Circulant Embedding of the Covariance Matrix , 1997, SIAM J. Sci. Comput..

[43]  Patrick E. Farrell,et al.  Conservative interpolation between volume meshes by local Galerkin projection , 2011 .

[44]  R. Caflisch,et al.  Quasi-Monte Carlo integration , 1995 .

[45]  Frances Y. Kuo,et al.  Multi-level Quasi-Monte Carlo Finite Element Methods for a Class of Elliptic PDEs with Random Coefficients , 2015, Foundations of Computational Mathematics.

[46]  D. Gilbarg,et al.  Elliptic Partial Differential Equa-tions of Second Order , 1977 .

[47]  Helmut Harbrecht,et al.  Covariance regularity and $$\mathcal {H}$$H-matrix approximation for rough random fields , 2017, Numerische Mathematik.

[48]  Frances Y. Kuo,et al.  Circulant embedding with QMC: analysis for elliptic PDE with lognormal coefficients , 2018, Numerische Mathematik.

[49]  Robert D. Falgout,et al.  hypre: A Library of High Performance Preconditioners , 2002, International Conference on Computational Science.

[50]  Fabio Nobile,et al.  Optimization of mesh hierarchies in multilevel Monte Carlo samplers , 2014, Stochastics and Partial Differential Equations Analysis and Computations.

[51]  Matthew D. Piggott,et al.  Conservative interpolation between unstructured meshes via supermesh construction , 2009 .

[52]  C. Lemieux Monte Carlo and Quasi-Monte Carlo Sampling , 2009 .

[53]  Wolfgang Dahmen,et al.  Wavelets in Numerical Analysis , 2005 .

[54]  Elisabeth Ullmann,et al.  Analysis of Boundary Effects on PDE-Based Sampling of Whittle-Matérn Random Fields , 2018, SIAM/ASA J. Uncertain. Quantification.

[55]  James A. Nichols,et al.  Quasi-Monte Carlo finite element methods for elliptic PDEs with lognormal random coefficients , 2015, Numerische Mathematik.

[56]  H. Rue,et al.  An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach , 2011 .

[57]  Hermann G. Matthies,et al.  Application of hierarchical matrices for computing the Karhunen–Loève expansion , 2009, Computing.

[58]  Jürgen Potthoff,et al.  White Noise: An Infinite Dimensional Calculus , 1993 .

[59]  P. L’Ecuyer,et al.  Variance Reduction via Lattice Rules , 1999 .

[60]  Helmut Harbrecht,et al.  Covariance regularity and H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {H}$$\end{document}-matrix approxi , 2014, Numerische Mathematik.

[61]  Michael B. Giles,et al.  Multilevel Monte Carlo Path Simulation , 2008, Oper. Res..

[62]  A. Wathen Realistic Eigenvalue Bounds for the Galerkin Mass Matrix , 1987 .

[63]  Frances Y. Kuo,et al.  Quasi-Monte Carlo methods for elliptic PDEs with random coefficients and applications , 2011, J. Comput. Phys..

[64]  Art B. Owen,et al.  Scrambling Sobol' and Niederreiter-Xing Points , 1998, J. Complex..

[65]  Wolfgang Hackbusch,et al.  Elliptic Differential Equations: Theory and Numerical Treatment , 2017 .