暂无分享,去创建一个
P. E. Farrell | M. Croci | M. B. Giles | M. Giles | P. Farrell | M. Croci
[1] Frances Y. Kuo,et al. Multilevel Quasi-Monte Carlo methods for lognormal diffusion problems , 2015, Math. Comput..
[2] Michael B. Giles,et al. Multilevel quasi-Monte Carlo path simulation , 2009 .
[3] B. Tapley,et al. Generalized Random Processes: A Theory and the White Gaussian Process , 1975 .
[4] David Bolin,et al. The SPDE approach for Gaussian random fields with general smoothness , 2017 .
[5] Panayot S. Vassilevski,et al. A Multilevel, Hierarchical Sampling Technique for Spatially Correlated Random Fields , 2017, SIAM J. Sci. Comput..
[6] Panayot S. Vassilevski,et al. Scalable hierarchical PDE sampler for generating spatially correlated random fields using nonmatching meshes , 2017, Numer. Linear Algebra Appl..
[7] David Bolin,et al. Numerical solution of fractional elliptic stochastic PDEs with spatial white noise , 2017, IMA Journal of Numerical Analysis.
[8] P. Whittle. ON STATIONARY PROCESSES IN THE PLANE , 1954 .
[9] Ruth E Baker,et al. Quasi-Monte Carlo Methods Applied to Tau-Leaping in Stochastic Biological Systems , 2018, Bulletin of Mathematical Biology.
[10] L. Herrmann,et al. Multilevel quasi-Monte Carlo integration with product weights for elliptic PDEs with lognormal coefficients , 2019, ESAIM: Mathematical Modelling and Numerical Analysis.
[11] Rainer Buckdahn,et al. Monotonicity Methods for White Noise Driven Quasi-Linear SPDEs , 1990 .
[12] Anders Logg,et al. Automated Solution of Differential Equations by the Finite Element Method: The FEniCS Book , 2012 .
[13] Stefan Heinrich,et al. Multilevel Monte Carlo Methods , 2001, LSSC.
[14] Patrick E. Farrell,et al. Galerkin projection of discrete fields via supermesh construction , 2009 .
[15] A. Owen. Randomly Permuted (t,m,s)-Nets and (t, s)-Sequences , 1995 .
[16] I. Daubechies. Orthonormal bases of compactly supported wavelets , 1988 .
[17] A. Owen. Scrambled net variance for integrals of smooth functions , 1997 .
[18] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[19] Michael B. Giles,et al. Multilevel Monte Carlo methods , 2013, Acta Numerica.
[20] Elisabeth Ullmann,et al. Further analysis of multilevel Monte Carlo methods for elliptic PDEs with random coefficients , 2012, Numerische Mathematik.
[21] T. Sullivan. Introduction to Uncertainty Quantification , 2015 .
[22] W. Hackbusch,et al. Hierarchical Matrices: Algorithms and Analysis , 2015 .
[23] K. A. Cliffe,et al. Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients , 2011, Comput. Vis. Sci..
[24] William Gropp,et al. PETSc Users Manual Revision 3.4 , 2016 .
[25] Frances Y. Kuo,et al. Fast random field generation with H-matrices , 2017, Numerische Mathematik.
[26] A. Owen,et al. Valuation of mortgage-backed securities using Brownian bridges to reduce effective dimension , 1997 .
[27] Chris L. Farmer,et al. Application of Stochastic Partial Differential Equations to Reservoir Property Modelling , 2010 .
[28] Frances Y. Kuo,et al. High-dimensional integration: The quasi-Monte Carlo way*† , 2013, Acta Numerica.
[29] Kristin Kirchner,et al. Regularity and convergence analysis in Sobolev and Hölder spaces for generalized Whittle–Matérn fields , 2019, Numerische Mathematik.
[30] Paul Glasserman,et al. Monte Carlo Methods in Financial Engineering , 2003 .
[31] Robert Scheichl,et al. Finite Element Error Analysis of Elliptic PDEs with Random Coefficients and Its Application to Multilevel Monte Carlo Methods , 2013, SIAM J. Numer. Anal..
[32] A. Wood,et al. Simulation of Stationary Gaussian Processes in [0, 1] d , 1994 .
[33] Frances Y. Kuo,et al. Analysis of Circulant Embedding Methods for Sampling Stationary Random Fields , 2017, SIAM J. Numer. Anal..
[34] I. Sobol,et al. Construction and Comparison of High-Dimensional Sobol' Generators , 2011 .
[35] Frances Y. Kuo,et al. Constructing Sobol Sequences with Better Two-Dimensional Projections , 2008, SIAM J. Sci. Comput..
[36] Markus Bachmayr,et al. Unified Analysis of Periodization-Based Sampling Methods for Matérn Covariances , 2020, SIAM J. Numer. Anal..
[37] Art B. Owen,et al. Variance and discrepancy with alternative scramblings , 2002 .
[38] W. Schachermayer,et al. Multilevel quasi-Monte Carlo path simulation , 2009 .
[39] Kiyosi Itô,et al. Stationary random distributions , 1954 .
[40] H. Niederreiter,et al. Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing , 1995 .
[41] Marie E. Rognes,et al. Efficient White Noise Sampling and Coupling for Multilevel Monte Carlo with Nonnested Meshes , 2018, SIAM/ASA J. Uncertain. Quantification.
[42] C. R. Dietrich,et al. Fast and Exact Simulation of Stationary Gaussian Processes through Circulant Embedding of the Covariance Matrix , 1997, SIAM J. Sci. Comput..
[43] Patrick E. Farrell,et al. Conservative interpolation between volume meshes by local Galerkin projection , 2011 .
[44] R. Caflisch,et al. Quasi-Monte Carlo integration , 1995 .
[45] Frances Y. Kuo,et al. Multi-level Quasi-Monte Carlo Finite Element Methods for a Class of Elliptic PDEs with Random Coefficients , 2015, Foundations of Computational Mathematics.
[46] D. Gilbarg,et al. Elliptic Partial Differential Equa-tions of Second Order , 1977 .
[47] Helmut Harbrecht,et al. Covariance regularity and $$\mathcal {H}$$H-matrix approximation for rough random fields , 2017, Numerische Mathematik.
[48] Frances Y. Kuo,et al. Circulant embedding with QMC: analysis for elliptic PDE with lognormal coefficients , 2018, Numerische Mathematik.
[49] Robert D. Falgout,et al. hypre: A Library of High Performance Preconditioners , 2002, International Conference on Computational Science.
[50] Fabio Nobile,et al. Optimization of mesh hierarchies in multilevel Monte Carlo samplers , 2014, Stochastics and Partial Differential Equations Analysis and Computations.
[51] Matthew D. Piggott,et al. Conservative interpolation between unstructured meshes via supermesh construction , 2009 .
[52] C. Lemieux. Monte Carlo and Quasi-Monte Carlo Sampling , 2009 .
[53] Wolfgang Dahmen,et al. Wavelets in Numerical Analysis , 2005 .
[54] Elisabeth Ullmann,et al. Analysis of Boundary Effects on PDE-Based Sampling of Whittle-Matérn Random Fields , 2018, SIAM/ASA J. Uncertain. Quantification.
[55] James A. Nichols,et al. Quasi-Monte Carlo finite element methods for elliptic PDEs with lognormal random coefficients , 2015, Numerische Mathematik.
[56] H. Rue,et al. An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach , 2011 .
[57] Hermann G. Matthies,et al. Application of hierarchical matrices for computing the Karhunen–Loève expansion , 2009, Computing.
[58] Jürgen Potthoff,et al. White Noise: An Infinite Dimensional Calculus , 1993 .
[59] P. L’Ecuyer,et al. Variance Reduction via Lattice Rules , 1999 .
[60] Helmut Harbrecht,et al. Covariance regularity and H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {H}$$\end{document}-matrix approxi , 2014, Numerische Mathematik.
[61] Michael B. Giles,et al. Multilevel Monte Carlo Path Simulation , 2008, Oper. Res..
[62] A. Wathen. Realistic Eigenvalue Bounds for the Galerkin Mass Matrix , 1987 .
[63] Frances Y. Kuo,et al. Quasi-Monte Carlo methods for elliptic PDEs with random coefficients and applications , 2011, J. Comput. Phys..
[64] Art B. Owen,et al. Scrambling Sobol' and Niederreiter-Xing Points , 1998, J. Complex..
[65] Wolfgang Hackbusch,et al. Elliptic Differential Equations: Theory and Numerical Treatment , 2017 .