Detection of linear and circular shapes in image analysis

A two-step algorithm is proposed for estimating linear and circular shapes in noisy images. Initially and based on a previously proposed method, the pixels which are close to the edges of the shape are detected. These edges are assumed to be coming from a mixture of (linear or circular) regression functions and the parameters of these functions are estimated. An example with a triangle demonstrates the immense advantage of using an outlier robust estimator for the edge points. A second example deals with a problem from biology where the detection of circular shapes of fungi colonies is of interest.

[1]  Tim Garlipp On robust jump detection in regression surfaces with applications to image analysis , 2004 .

[2]  B. Ripley,et al.  Pattern Recognition , 1968, Nature.

[3]  P. Qiu A Nonparametric Procedure to Detect Jumps in Regression Surfaces , 2002 .

[4]  P. Qiu Image processing and jump regression analysis , 2005 .

[5]  Jean-Michel Jolion,et al.  Robust Clustering with Applications in Computer Vision , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  H. Müller,et al.  Maximin estimation of multidimensional boundaries , 1994 .

[7]  J. Ghosh A New Proof of the Bahadur Representation of Quantiles and an Application , 1971 .

[8]  P. L. Davies,et al.  Consistent estimates for finite mixtures of well separated elliptical distributions , 1988 .

[9]  T. Garlipp Robust Jump Detection in Regression Surface , 2004 .

[10]  Zujun Hou,et al.  Robust edge detection , 2003, Pattern Recognit..

[11]  W. Krumbein,et al.  Multiple Stress Factors affecting Growth of Rock‐inhabiting Black Fungi , 1995 .

[12]  W. Härdle,et al.  Robust Non-parametric Function Fitting , 1984 .

[13]  J. Marron,et al.  Edge-Preserving Smoothers for Image Processing , 1998 .

[14]  P. Qiu Estimation of the number of jumps of the jump regression functions , 1994 .

[15]  P. Qiu,et al.  ESTIMATION OF JUMP REGRESSION FUNCTION , 1991 .

[16]  W. DeSarbo,et al.  A maximum likelihood methodology for clusterwise linear regression , 1988 .

[17]  C. Müller,et al.  Simple consistent cluster methods based on redescending M-estimators with an application to edge identification in images , 2005 .

[18]  S Bologna,et al.  On Clusterwise Linear Regression , 2005 .

[19]  Raghu Krishnapuram,et al.  Fitting an unknown number of lines and planes to image data through compatible cluster merging , 1992, Pattern Recognit..

[20]  Helmuth Späth,et al.  Algorithm 39 Clusterwise linear regression , 1979, Computing.

[21]  Sanford Weisberg,et al.  Computing science and statistics : proceedings of the 30th Symposium on the Interface, Minneapolis, Minnesota, May 13-16, 1998 : dimension reduction, computational complexity and information , 1998 .

[22]  Stefan Van Aelst,et al.  Positive-Breakdown Robust Methods in Computer Vision , 1999 .

[23]  C. Chu,et al.  Kernel-Type Estimators of Jump Points and Values of a Regression Function , 1993 .

[24]  David Malah,et al.  A study of edge detection algorithms , 1982, Comput. Graph. Image Process..

[25]  Hans-Hermann Bock,et al.  Classification and Related Methods of Data Analysis , 1988 .

[26]  V. J. Rayward-Smith,et al.  Fuzzy Cluster Analysis: Methods for Classification, Data Analysis and Image Recognition , 1999 .

[27]  J. C. Peters,et al.  Fuzzy Cluster Analysis : A New Method to Predict Future Cardiac Events in Patients With Positive Stress Tests , 1998 .

[28]  Clustering, classification and image segmentation on the grid , 1993 .

[29]  Dong Hoon Lim,et al.  Robust edge detection in noisy images , 2006, Comput. Stat. Data Anal..

[30]  Peter Meer,et al.  Edge-Preserving Smoothers for Image Processing: Comment , 1998 .

[31]  H. Müller CHANGE-POINTS IN NONPARAMETRIC REGRESSION ANALYSIS' , 1992 .

[32]  B. Yandell,et al.  Jump Detection in Regression Surfaces , 1997 .

[33]  L. Armijo Minimization of functions having Lipschitz continuous first partial derivatives. , 1966 .

[34]  Larry S. Davis,et al.  A survey of edge detection techniques , 1975 .

[35]  M. Wedel,et al.  A Clusterwise Regression Method for Simultaneous Fuzzy Market Structuring and Benefit Segmentation , 1991 .

[36]  Fitting redescending M-estimators in regression , 1990 .