Plasmonics-enhanced metal–organic framework nanoporous films for highly sensitive near-infrared absorption

Combined plasmonic nanocrystals and metal–organic framework thin-films are fabricated for sensing gases in the near-infrared range. This nanocomposite thin-film shows a highly sensitive response in near-infrared absorption, which is attributed to preconcentration of gas molecules in metal–organic framework pores causing close proximity to the electromagnetic fields at the plasmonic nanocrystal surface.

[1]  Lang Liu,et al.  Dynamic interplay between spin-crossover and host-guest function in a nanoporous metal-organic framework material. , 2009, Journal of the American Chemical Society.

[2]  Omar K Farha,et al.  Fabrication of Metal‐Organic Framework‐Containing Silica‐Colloidal Crystals for Vapor Sensing , 2011, Advanced materials.

[3]  K. Sada,et al.  SERS-Active Metal–Organic Frameworks Embedding Gold Nanorods , 2011 .

[4]  Guang Lu,et al.  Metal-organic frameworks as sensors: a ZIF-8 based Fabry-Pérot device as a selective sensor for chemical vapors and gases. , 2010, Journal of the American Chemical Society.

[5]  H. S. Wolff,et al.  iRun: Horizontal and Vertical Shape of a Region-Based Graph Compression , 2022, Sensors.

[6]  Yizheng Jin,et al.  Molecular mechanism of monodisperse colloidal tin-doped indium oxide nanocrystals by a hot-injection approach , 2013, Nanoscale Research Letters.

[7]  Harald Giessen,et al.  Vibrational near-field mapping of planar and buried three-dimensional plasmonic nanostructures , 2013, Nature Communications.

[8]  Gérard Férey,et al.  Adsorption properties in high optical quality nanoZIF-8 thin films with tunable thickness , 2010 .

[9]  C. Summers,et al.  Synthesis of a Nonagglomerated Indium Tin Oxide Nanoparticle Dispersion , 2008 .

[10]  O. Shekhah,et al.  High‐Throughput Fabrication of Uniform and Homogenous MOF Coatings , 2011 .

[11]  Omar K Farha,et al.  Metal-organic framework materials as chemical sensors. , 2012, Chemical reviews.

[12]  Qiang Xu,et al.  Metal–organic frameworks as platforms for clean energy , 2013 .

[13]  Richard P Van Duyne,et al.  Metal-organic framework thin film for enhanced localized surface plasmon resonance gas sensing. , 2010, Analytical chemistry.

[14]  A Alec Talin,et al.  Stress-induced chemical detection using flexible metal-organic frameworks. , 2008, Journal of the American Chemical Society.

[15]  Gongke Li,et al.  Fabrication of gold nanoparticle-embedded metal-organic framework for highly sensitive surface-enhanced Raman scattering detection. , 2014, Analytical chemistry.

[16]  Evan L. Runnerstrom,et al.  Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals. , 2011, Nano letters.

[17]  C. Sanchez,et al.  Porosity and mechanical properties of mesoporous thin films assessed by environmental ellipsometric porosimetry. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[18]  Peter Nordlander,et al.  Surface-enhanced infrared absorption using individual cross antennas tailored to chemical moieties. , 2013, Journal of the American Chemical Society.

[19]  Gérard Férey,et al.  Hybrid porous solids: past, present, future. , 2008, Chemical Society reviews.

[20]  M. Allendorf,et al.  Luminescent metal-organic frameworks. , 2009, Chemical Society reviews.

[21]  Paul R. Ohodnicki,et al.  Optical gas sensing responses in transparent conducting oxides with large free carrier density , 2014 .

[22]  Gnanaprakash Dharmalingam,et al.  Thermal energy harvesting plasmonic based chemical sensors. , 2014, ACS nano.

[23]  Yanfeng Yue,et al.  Luminescent functional metal-organic frameworks. , 2012, Chemical Reviews.

[24]  O. Shekhah,et al.  MOF thin films: existing and future applications. , 2011, Chemical Society reviews.

[25]  T. Bein,et al.  Oriented nanoscale films of metal-organic frameworks by room-temperature gel-layer synthesis. , 2010, Angewandte Chemie.

[26]  Martina Abb,et al.  Surface-enhanced infrared spectroscopy using metal oxide plasmonic antenna arrays. , 2014, Nano letters.

[27]  Masayuki Kanehara,et al.  Indium tin oxide nanoparticles with compositionally tunable surface plasmon resonance frequencies in the near-IR region. , 2009, Journal of the American Chemical Society.

[28]  Randall Q. Snurr,et al.  Ultrahigh Porosity in Metal-Organic Frameworks , 2010, Science.

[29]  Hong-Cai Zhou,et al.  Selective gas adsorption and separation in metal-organic frameworks. , 2009, Chemical Society reviews.

[30]  Christopher Matranga,et al.  Plasmonic nanocomposite thin film enabled fiber optic sensors for simultaneous gas and temperature sensing at extreme temperatures. , 2013, Nanoscale.

[31]  Ronen Adato,et al.  In-situ ultra-sensitive infrared absorption spectroscopy of biomolecule interactions in real time with plasmonic nanoantennas , 2013, Nature Communications.

[32]  Gunter Hagen,et al.  Metal-Organic Frameworks for Sensing Applications in the Gas Phase , 2009, Sensors.

[33]  Cristiano D'Andrea,et al.  Optical nanoantennas for multiband surface-enhanced infrared and Raman spectroscopy. , 2013, ACS nano.

[34]  Liberato Manna,et al.  New materials for tunable plasmonic colloidal nanocrystals. , 2014, Chemical Society reviews.

[35]  Paul R. Ohodnicki,et al.  Plasmonic transparent conducting metal oxide nanoparticles and nanoparticle films for optical sensing applications , 2013 .

[36]  Zhong Lin Wang,et al.  Shell-isolated nanoparticle-enhanced Raman spectroscopy , 2010, Nature.

[37]  Bo Liu,et al.  Metal–organic framework-based devices: separation and sensors , 2012 .

[38]  S. Shinkai,et al.  A chromo-fluorogenic tetrazole-based CoBr2 coordination polymer gel as a highly sensitive and selective chemosensor for volatile gases containing chloride. , 2011, Chemistry.

[39]  K. Sada,et al.  Stable and Functional Gold Nanorod Composites with a Metal–Organic Framework Crystalline Shell , 2013 .

[40]  R. Fischer,et al.  Metal-organic framework thin films: from fundamentals to applications. , 2012, Chemical reviews.

[41]  Zhenda Lu,et al.  Solvatochromic behavior of a nanotubular metal-organic framework for sensing small molecules. , 2011, Journal of the American Chemical Society.

[42]  W. Jin,et al.  Step-by-step seeding procedure for preparing HKUST-1 membrane on porous α-alumina support. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[43]  Paul R. Ohodnicki,et al.  In-situ and ex-situ characterization of TiO2 and Au nanoparticle incorporated TiO2 thin films for optical gas sensing at extreme temperatures , 2012 .

[44]  T. Bein,et al.  Direct growth of Cu3(BTC)2(H2O)3 · xH2O thin films on modified QCM-gold electrodes – Water sorption isotherms , 2008 .

[45]  J. Atwood,et al.  Engineering void space in organic van der Waals crystals: calixarenes lead the way. , 2007, Chemical Society reviews.

[46]  M. Tu,et al.  Metal-organic framework thin films: crystallite orientation dependent adsorption. , 2013, Angewandte Chemie.

[47]  Ray T. Chen,et al.  On-chip methane sensing by near-IR absorption signatures in a photonic crystal slot waveguide. , 2011, Optics letters.

[48]  M. Carreon,et al.  Synthesis and CO2/CH4 separation performance of Bio-MOF-1 membranes. , 2012, Chemical communications.

[49]  R. Dasari,et al.  Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS) , 1997 .

[50]  Matthew C. Dixon,et al.  Kinetics and mechanism of metal–organic framework thin film growth: systematic investigation of HKUST-1 deposition on QCM electrodes , 2012 .

[51]  M. Lipson,et al.  On-chip gas detection in silicon optical microcavities , 2008, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[52]  Alessandro Martucci,et al.  Gold Nanoparticle‐Doped TiO2 Semiconductor Thin Films: Gas Sensing Properties , 2008 .

[53]  Stephen D. Burd,et al.  Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation , 2013, Nature.