Degrees of autostability relative to strong constructivizations

The spectra of the Turing degrees of autostability of computable models are studied. For almost prime decidable models, it is shown that the autostability spectrum relative to strong constructivizations of such models always contains a certain recursively enumerable Turing degree; moreover, it is shown that for any recursively enumerable Turing degree, there exist prime models in which this degree is the least one in the autostability spectrum relative to strong constructivizations.

[1]  S. S. Goncharov,et al.  Constructivizability of superatomic Boolean algebras , 1973 .

[2]  Terrence Millar Foundations of recursive model theory , 1978 .

[3]  Сергей Савостьянович Гончаров,et al.  Об автоустойчивости относительно сильных конструктивизаций почти простых моделей@@@On autostability of almost prime models relative to strong constructivizations , 2010 .

[4]  Jr. Hartley Rogers Theory of Recursive Functions and Effective Computability , 1969 .

[5]  Ch. F. D. McCoy Partial Results in Δ30-Categoricity in Linear Orderings and Boolean Algebras , 2002 .

[6]  Charles F. D. McCoy Delta20 - categoricity in Boolean algebras and linear orderings , 2003, Ann. Pure Appl. Log..

[7]  Julia A. Knight,et al.  Computable structures and the hyperarithmetical hierarchy , 2000 .

[8]  S. S. Goncharov,et al.  Chapter 2 Elementary theories and their constructive models , 1998 .

[9]  J. Shepherdson,et al.  Effective procedures in field theory , 1956, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[10]  Julia F. Knight,et al.  Enumerations in computable structure theory , 2005, Ann. Pure Appl. Log..

[11]  Theodore A. Slaman,et al.  Relative to any nonrecursive set , 1998 .

[12]  S. Goncharov On autostability of almost prime models relative to strong constructivizations , 2011 .

[13]  S. S. Goncharov,et al.  Computability and Computable Models , 2007 .

[14]  Chen C. Chang,et al.  Model Theory: Third Edition (Dover Books On Mathematics) By C.C. Chang;H. Jerome Keisler;Mathematics , 1966 .

[15]  A. I. Mal'cev Algorithms and Recursive Functions , 1970 .

[16]  Leo Harrington Recursively Presentable Prime Models , 1974, J. Symb. Log..

[17]  Leo F. Boron,et al.  Algorithms and recursive functions , 1970 .

[18]  Julia F. Knight,et al.  Generic Copies of Countable Structures , 1989, Ann. Pure Appl. Log..

[19]  John Chisholm,et al.  Effective model theory vs. recursive model theory , 1990, Journal of Symbolic Logic.

[20]  S. S. Goncharov,et al.  Constructive models of complete solvable theories , 1973 .

[21]  A. I. Mal'tsev CONSTRUCTIVE ALGEBRAS I , 1961 .

[22]  S. Goncharov autostability of prime models under strong constructivizations , 2009 .

[23]  Stephan Wehner,et al.  Enumerations, countable structures and Turing degrees , 1998 .

[24]  S. Goncharov Countable Boolean Algebras and Decidability , 1997 .

[25]  I︠U︡riĭ Leonidovich Ershov Recursive model theory , 1998 .

[26]  Christopher J. Ash Categoricity in hyperarithmetical degrees , 1987, Ann. Pure Appl. Log..

[27]  A. T. Nurtazin,et al.  Strong and weak constructivization and computable families , 1974 .

[28]  Ekaterina B. Fokina,et al.  Degrees of categoricity of computable structures , 2010, Arch. Math. Log..

[29]  Julia F. Knight,et al.  Intrinsic bounds on complexity and definability at limit levels , 2009, J. Symb. Log..

[30]  Some aspects of generalized computability , 1973 .

[31]  S. Goncharov,et al.  Computable Structure and Non-Structure Theorems , 2002 .

[32]  Dov M. Gabbay,et al.  Mathematical Problems from Applied Logic I , 2006 .