Dysregulation of miRNA-9 in a Subset of Schizophrenia Patient-Derived Neural Progenitor Cells.

[1]  Peng Ye,et al.  miR-137 forms a regulatory loop with nuclear receptor TLX and LSD1 in neural stem cells. , 2011, Nature communications.

[2]  Hiroshi Kiyonari,et al.  MicroRNA-9 Regulates Neurogenesis in Mouse Telencephalon by Targeting Multiple Transcription Factors , 2011, The Journal of Neuroscience.

[3]  G. Pedraza-Alva,et al.  microRNAs: key triggers of neuronal cell fate , 2014, Front. Cell. Neurosci..

[4]  Hui Zhou,et al.  starBase: a database for exploring microRNA–mRNA interaction maps from Argonaute CLIP-Seq and Degradome-Seq data , 2010, Nucleic Acids Res..

[5]  C. Burge,et al.  Most mammalian mRNAs are conserved targets of microRNAs. , 2008, Genome research.

[6]  Alexander E. Kel,et al.  TRANSFAC®: transcriptional regulation, from patterns to profiles , 2003, Nucleic Acids Res..

[7]  Piotr J. Balwierz,et al.  ISMARA: automated modeling of genomic signals as a democracy of regulatory motifs , 2014, Genome research.

[8]  C. Spencer,et al.  Biological Insights From 108 Schizophrenia-Associated Genetic Loci , 2014, Nature.

[9]  Hua Su,et al.  MicroRNA-9 coordinates proliferation and migration of human embryonic stem cell-derived neural progenitors. , 2010, Cell stem cell.

[10]  J. Vyas Schizophrenia: New Pathological Insights and Therapies , 2018 .

[11]  B. H. Miller,et al.  MicroRNA-132 dysregulation in schizophrenia has implications for both neurodevelopment and adult brain function , 2012, Proceedings of the National Academy of Sciences.

[12]  K. Brennand,et al.  Altered WNT Signaling in Human Induced Pluripotent Stem Cell Neural Progenitor Cells Derived from Four Schizophrenia Patients , 2015, Biological Psychiatry.

[13]  J. Sebat,et al.  Spatiotemporal 16p11.2 Protein Network Implicates Cortical Late Mid-Fetal Brain Development and KCTD13-Cul3-RhoA Pathway in Psychiatric Diseases , 2015, Neuron.

[14]  Manu Setty,et al.  Inferring transcriptional and microRNA-mediated regulatory programs in glioblastoma , 2012, Molecular systems biology.

[15]  Joel S Parker,et al.  microRNA expression in the prefrontal cortex of individuals with schizophrenia and schizoaffective disorder , 2007, Genome Biology.

[16]  Jun S. Liu,et al.  Integrating regulatory motif discovery and genome-wide expression analysis , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[17]  J. Sebat,et al.  Characterization of molecular and cellular phenotypes associated with a heterozygous CNTNAP2 deletion using patient-derived hiPSC neural cells , 2015, npj Schizophrenia.

[18]  Nicholas T. Ingolia,et al.  Mammalian microRNAs predominantly act to decrease target mRNA levels , 2010, Nature.

[19]  Allan R. Jones,et al.  Transcriptional Landscape of the Prenatal Human Brain , 2014, Nature.

[20]  A. Børglum,et al.  Analyzing the Role of MicroRNAs in Schizophrenia in the Context of Common Genetic Risk Variants. , 2016, JAMA psychiatry.

[21]  J N Giedd,et al.  Neurodevelopmental model of schizophrenia: update 2012 , 2012, Molecular Psychiatry.

[22]  P. Jin,et al.  MicroRNA miR‐137 Regulates Neuronal Maturation by Targeting Ubiquitin Ligase Mind Bomb‐1 , 2010, Stem cells.

[23]  F. Gage,et al.  Phenotypic differences in hiPSC NPCs derived from patients with schizophrenia , 2014, Molecular Psychiatry.

[24]  Wyeth W. Wasserman,et al.  JASPAR: an open-access database for eukaryotic transcription factor binding profiles , 2004, Nucleic Acids Res..

[25]  P. Sullivan,et al.  Transcriptional targets of the schizophrenia risk gene MIR137 , 2014, Translational Psychiatry.

[26]  Fred H. Gage,et al.  Modelling schizophrenia using human induced pluripotent stem cells , 2011, Nature.

[27]  S. Siris,et al.  Implications of normal brain development for the pathogenesis of schizophrenia. , 1988, Archives of general psychiatry.

[28]  Tony J. Simon,et al.  22q11.2 microdeletions: linking DNA structural variation to brain dysfunction and schizophrenia , 2010, Nature Reviews Neuroscience.

[29]  G. Haegeman,et al.  Targeting inflammation using selective glucocorticoid receptor modulators. , 2010, Current opinion in pharmacology.

[30]  Mark D. Robinson,et al.  edgeR: a Bioconductor package for differential expression analysis of digital gene expression data , 2009, Bioinform..

[31]  K. Brennand,et al.  A guide to generating and using hiPSC derived NPCs for the study of neurological diseases. , 2015, Journal of visualized experiments : JoVE.

[32]  M. Tomishima,et al.  Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling , 2009, Nature Biotechnology.