Individual vesicle fusion events mediated by lipid-anchored DNA.

[1]  Patricia Grob,et al.  Synaptic proteins promote calcium-triggered fast transition from point contact to full fusion , 2012, eLife.

[2]  T. Südhof,et al.  The membrane fusion enigma: SNAREs, Sec1/Munc18 proteins, and their accomplices--guilty as charged? , 2012, Annual review of cell and developmental biology.

[3]  R. Jahn,et al.  Molecular machines governing exocytosis of synaptic vesicles , 2012, Nature.

[4]  M. Lindau,et al.  Coarse-grain simulations reveal movement of the synaptobrevin C-terminus in response to piconewton forces. , 2012, Biophysical journal.

[5]  R. Jahn,et al.  Membrane Fusion Intermediates via Directional and Full Assembly of the SNARE Complex , 2012, Science.

[6]  Frédéric Pincet,et al.  SNARE Proteins: One to Fuse and Three to Keep the Nascent Fusion Pore Open , 2012, Science.

[7]  S. Boxer,et al.  Vesicle fusion observed by content transfer across a tethered lipid bilayer. , 2011, Biophysical journal.

[8]  W. Wickner,et al.  A lipid-anchored SNARE supports membrane fusion , 2011, Proceedings of the National Academy of Sciences.

[9]  Patricia Grob,et al.  In vitro system capable of differentiating fast Ca2+-triggered content mixing from lipid exchange for mechanistic studies of neurotransmitter release , 2011, Proceedings of the National Academy of Sciences.

[10]  Marta K. Domanska,et al.  Docking and fast fusion of synaptobrevin vesicles depends on the lipid compositions of the vesicle and the acceptor SNARE complex-containing target membrane. , 2010, Biophysical journal.

[11]  Alexander M. Walter,et al.  Role of the synaptobrevin C terminus in fusion pore formation , 2010, Proceedings of the National Academy of Sciences.

[12]  S. Boxer,et al.  Covalent attachment of lipid vesicles to a fluid-supported bilayer allows observation of DNA-mediated vesicle interactions. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[13]  Peter M. Kasson,et al.  Atomic-Resolution Simulations Predict a Transition State for Vesicle Fusion Defined by Contact of a Few Lipid Tails , 2010, PLoS Comput. Biol..

[14]  F. Höök,et al.  Site-specific DNA-controlled fusion of single lipid vesicles to supported lipid bilayers. , 2010, Chemphyschem : a European journal of chemical physics and physical chemistry.

[15]  Jeff Coleman,et al.  A fast, single-vesicle fusion assay mimics physiological SNARE requirements , 2010, Proceedings of the National Academy of Sciences.

[16]  F. Wouters,et al.  One SNARE complex is sufficient for membrane fusion , 2010, Nature Structural &Molecular Biology.

[17]  S. Boxer,et al.  DNA-tethered membranes formed by giant vesicle rupture. , 2009, Journal of structural biology.

[18]  Marta K. Domanska,et al.  Single Vesicle Millisecond Fusion Kinetics Reveals Number of SNARE Complexes Optimal for Fast SNARE-mediated Membrane Fusion* , 2009, The Journal of Biological Chemistry.

[19]  Reinhard Jahn,et al.  Helical extension of the neuronal SNARE complex into the membrane , 2009, Nature.

[20]  Elizabeth A. Smith,et al.  Lipid mixing and content release in single-vesicle, SNARE-driven fusion assay with 1-5 ms resolution. , 2009, Biophysical journal.

[21]  Hana Robson Marsden,et al.  A reduced SNARE model for membrane fusion. , 2009, Angewandte Chemie.

[22]  S. Boxer,et al.  Effects of linker sequences on vesicle fusion mediated by lipid-anchored DNA oligonucleotides , 2009, Proceedings of the National Academy of Sciences.

[23]  A. Kashiwada,et al.  Target-selective vesicle fusion induced by molecular recognition on lipid bilayers. , 2009, Chemical communications.

[24]  Antoine M. van Oijen,et al.  Single-particle kinetics of influenza virus membrane fusion , 2008, Proceedings of the National Academy of Sciences.

[25]  J. Rizo,et al.  Synaptic vesicle fusion , 2008, Nature Structural &Molecular Biology.

[26]  S. Boxer,et al.  Lipid-anchored DNA mediates vesicle fusion as observed by lipid and content mixing , 2008, Biointerphases.

[27]  Tingting Wang,et al.  Productive hemifusion intermediates in fast vesicle fusion driven by neuronal SNAREs. , 2008, Biophysical journal.

[28]  S. Boxer,et al.  Kinetics of DNA-mediated docking reactions between vesicles tethered to supported lipid bilayers , 2007, Proceedings of the National Academy of Sciences.

[29]  Raphael Zahn,et al.  DNA-induced programmable fusion of phospholipid vesicles. , 2007, Journal of the American Chemical Society.

[30]  T. Ha,et al.  Multiple intermediates in SNARE-induced membrane fusion , 2006, Proceedings of the National Academy of Sciences.

[31]  Helmut Grubmüller,et al.  Molecular Anatomy of a Trafficking Organelle , 2006, Cell.

[32]  S. Boxer,et al.  Diffusive dynamics of vesicles tethered to a fluid supported bilayer by single-particle tracking. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[33]  M. Jackson,et al.  Fusion pores and fusion machines in Ca2+-triggered exocytosis. , 2006, Annual review of biophysics and biomolecular structure.

[34]  J. Rizo,et al.  SNARE-mediated lipid mixing depends on the physical state of the vesicles. , 2006, Biophysical journal.

[35]  R. Zahn,et al.  DNA-mediated fusion of lipid vesicles , 2006 .

[36]  Edwin R Chapman,et al.  SNARE-driven, 25-millisecond vesicle fusion in vitro. , 2005, Biophysical journal.

[37]  Axel T Brunger,et al.  Structure and function of SNARE and SNARE-interacting proteins , 2005, Quarterly Reviews of Biophysics.

[38]  Lucas P. Watkins,et al.  Detection of intensity change points in time-resolved single-molecule measurements. , 2005, The journal of physical chemistry. B.

[39]  S. Boxer,et al.  General method for modification of liposomes for encoded assembly on supported bilayers. , 2005, Journal of the American Chemical Society.

[40]  S. Boxer,et al.  Vesicle adsorption and lipid bilayer formation on glass studied by atomic force microscopy. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[41]  A. Brunger,et al.  Single molecule observation of liposome-bilayer fusion thermally induced by soluble N-ethyl maleimide sensitive-factor attachment protein receptors (SNAREs). , 2004, Biophysical journal.

[42]  J. Rothman,et al.  Imaging single membrane fusion events mediated by SNARE proteins. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[43]  B. Lentz,et al.  Energetics of vesicle fusion intermediates: comparison of calculations with observed effects of osmotic and curvature stresses. , 2004, Biophysical journal.

[44]  R. Tsien,et al.  Single synaptic vesicles fusing transiently and successively without loss of identity , 2003, Nature.

[45]  Thomas B Woolf,et al.  Insights into the molecular mechanism of membrane fusion from simulation: evidence for the association of splayed tails. , 2003, Physical review letters.

[46]  Lin Yang,et al.  Observation of a Membrane Fusion Intermediate Structure , 2002, Science.

[47]  B. Lentz,et al.  The rate of lipid transfer during fusion depends on the structure of fluorescent lipid probes: a new chain-labeled lipid transfer probe pair. , 2001, Biochemistry.

[48]  Misuzu Baba,et al.  Geranylgeranylated Snares Are Dominant Inhibitors of Membrane Fusion , 2000, The Journal of cell biology.

[49]  J. Rothman,et al.  Close Is Not Enough , 2000, The Journal of cell biology.

[50]  Reinhard Jahn,et al.  Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 Å resolution , 1998, Nature.

[51]  Benedikt Westermann,et al.  SNAREpins: Minimal Machinery for Membrane Fusion , 1998, Cell.

[52]  B. Lentz,et al.  Acyl chain unsaturation and vesicle curvature alter outer leaflet packing and promote poly(ethylene glycol)-mediated membrane fusion. , 1997, Biochemistry.

[53]  J. Zimmerberg,et al.  The hemifusion intermediate and its conversion to complete fusion: regulation by membrane composition. , 1995, Biophysical journal.

[54]  D A Lauffenburger,et al.  Analysis of intracellular receptor/ligand sorting. Calculation of mean surface and bulk diffusion times within a sphere. , 1986, Biophysical journal.