Polarization modeling and predictions for DKIST, part 9: flux distribution with FIDO

Abstract. Astronomical instruments greatly improve wavelength multiplexing capabilities by using beam splitters. In the case of the 4-m National Science Foundation’s Daniel K. Inouye Solar Telescope (DKIST) solar telescope, over 70 W of optical power is distributed simultaneously to four instruments, each with multiple cameras. Many DKIST observing cases require simultaneous observations of many narrow bandpasses combined with an adaptive optics system. The facility uses five dichroic optical stations to allow at least 11 cameras and two wavefront sensors to simultaneously observe ultraviolet to infrared wavelengths with flexible reconfiguration. The DKIST dichroics required substantial development to achieve very tight specifications over very large apertures of 290 mm diameter. Coating spectral variation occurs over <1  nm wavelength, comparable with instrument bandpasses. We measure retardance spectral variation of up to a full wave and diattenuation varying over ±10  %   per nm. Spatial variation of Mueller matrix elements for coatings in both transmission and reflection requires careful metrology. We demonstrate coatings from multiple vendors exhibit this behavior. We show achievement of 5-nm root mean square (RMS) reflected wavefront and 24-nm RMS power with coatings over 8  μm thick. We show mild impacts of depolarization and spectral variation of polarization on modulation efficiency caused by the dichroic coatings. We show an end-to-end system polarization model for the visible spectropolarimeter instrument, including the dichroics, grating, analyzer, and all coated optics. We show detailed performance for all DKIST dichroics for community use in planning future observations.

[1]  Robert P. Hubbard,et al.  Daniel K. Inouye Solar Telescope systems engineering update , 2014, Astronomical Telescopes and Instrumentation.

[2]  Dirk Schmidt,et al.  Simulation of DKIST solar adaptive optics system , 2016, Astronomical Telescopes + Instrumentation.

[3]  C. U. Keller,et al.  The polarization optics for the European Solar Telescope (EST) , 2010, Astronomical Telescopes + Instrumentation.

[4]  David M. Harrington,et al.  Polarization modeling and predictions for DKIST part 1: telescope and example instrument configurations , 2016, Astronomical Telescopes + Instrumentation.

[5]  Thomas G. Baur,et al.  Measurement of polarization assemblies for the Daniel K. Inouye Solar Telescope , 2015, Photonics West - Optoelectronic Materials and Devices.

[6]  Scott Gregory,et al.  Bottom-up laboratory testing of the DKIST Visible Broadband Imager (VBI) , 2016, Astronomical Telescopes + Instrumentation.

[7]  J. Kuhn,et al.  Correcting Systematic Polarization Effects in Keck LRISp Spectropolarimetry to < 0.05% , 2015, 1505.03916.

[8]  Friedrich Wöger,et al.  Accelerated speckle imaging with the ATST visible broadband imager , 2012, Other Conferences.

[9]  Effects in polarimetry of interference within wave plates , 2005 .

[10]  Friedrich Wöger,et al.  The Daniel K. Inouye Solar Telescope first light instruments and critical science plan , 2014, Astronomical Telescopes and Instrumentation.

[11]  Kjetil Dohlen,et al.  The ZIMPOL high-contrast imaging polarimeter for SPHERE: design, manufacturing, and testing , 2010, Astronomical Telescopes + Instrumentation.

[12]  Andrew E. Ferayorni,et al.  DKIST visible broadband imager data processing pipeline , 2014, Astronomical Telescopes and Instrumentation.

[13]  Andrew Beard,et al.  DKIST controls model for synchronization of instrument cameras, polarization modulators, and mechanisms , 2014, Astronomical Telescopes and Instrumentation.

[14]  K. H. Jolliffee Optical properties of thin solid films , 1954 .

[15]  Haosheng Lin,et al.  Utilization of redundant polarized solar spectra to infer the polarization properties of the new generation of large aperture solar telescopes , 2010, Astronomical Telescopes + Instrumentation.

[16]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[17]  Andrew Ferayorni Instrument control software for the Visible Broadband Imager using ATST common services framework and base , 2012, Other Conferences.

[18]  D. W. Berreman,et al.  Optics in Stratified and Anisotropic Media: 4×4-Matrix Formulation , 1972 .

[19]  Russell A. Chipman,et al.  Characterization of DKIST retarder components with polarization ray tracing , 2014, Other Conferences.

[20]  Chris Mayer,et al.  World coordinate information for the Daniel K. Inouye Solar Telescope , 2016, Astronomical Telescopes + Instrumentation.

[21]  Christophe Verinaud,et al.  EPOL: the exoplanet polarimeter for EPICS at the E-ELT , 2010, Astronomical Telescopes + Instrumentation.

[22]  Jorge Sánchez Almeida Instrumental polarization in the focal plane of telescopes. 2: Effects induced by seeing , 1992 .

[23]  Steve Hegwer,et al.  DKIST visible broadband imager alignment in laboratory: first results , 2016, Astronomical Telescopes + Instrumentation.

[24]  Friedrich Wöger,et al.  A review of solar adaptive optics , 2016, Astronomical Telescopes + Instrumentation.

[25]  Ewan Douglas,et al.  Mueller matrix maps of dichroic filters reveal polarization aberrations , 2020, Astronomical Telescopes + Instrumentation.

[26]  Frans Snik,et al.  Design of a full-Stokes polarimeter for VLT/X-shooter , 2012, Other Conferences.

[27]  Christian Thalmann,et al.  Reduction of polarimetric data using Mueller calculus applied to Nasmyth instruments , 2008, Astronomical Telescopes + Instrumentation.

[28]  Robert P. Hubbard,et al.  Instrumentation for the Advanced Technology Solar Telescope , 2004, SPIE Astronomical Telescopes + Instrumentation.

[29]  Tetsu Anan,et al.  The Daniel K. Inouye Solar Telescope – Observatory Overview , 2020, Solar Physics.

[30]  David M. Harrington,et al.  Polarization modeling and predictions for Daniel K. Inouye Solar Telescope, part 7: preliminary NCSP system calibration and model fitting , 2021 .

[31]  Thomas R. Rimmele,et al.  Quasi-static wavefront control for the Advanced Technology Solar Telescope , 2012, Other Conferences.

[32]  Laurent Pilon,et al.  Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature. , 2007, Applied optics.

[33]  Alexander Bell,et al.  A two-dimensional spectropolarimeter as a first-light instrument for the Daniel K. Inouye Solar Telescope , 2014, Astronomical Telescopes and Instrumentation.

[34]  Friedrich Wöger,et al.  ATST visible broadband imager , 2012, Other Conferences.

[35]  Russell A. Chipman,et al.  Polarization Aberrations in Astronomical Telescopes: The Point Spread Function , 2015 .

[36]  C. Keller,et al.  Polarization Properties of Real Aluminum Mirrors, I. Influence of the Aluminum Oxide Layer , 2009, 0903.2740.

[37]  Robert P. Hubbard,et al.  Construction status of the Daniel K. Inouye solar telescope , 2016, Astronomical Telescopes + Instrumentation.

[38]  Christoph U. Keller,et al.  Solar polarimetry close to the diffraction limit , 2003, SPIE Astronomical Telescopes + Instrumentation.

[39]  Jose Marino Expected performance of solar adaptive optics in large-aperture solar telescopes , 2012 .

[40]  R. Chipman,et al.  Terrestrial exoplanet coronagraph image quality: study of polarization aberrations in Habex and LUVOIR update , 2018 .

[41]  Roberto Casini,et al.  Performance of polarization modulation and calibration optics for the Daniel K. Inouye Solar Telescope , 2014, Astronomical Telescopes and Instrumentation.

[42]  C. Beck,et al.  POLIS: A spectropolarimeter for the VTT and for GREGOR , 2003 .

[43]  Andrew E. Ferayorni,et al.  The Daniel K. Inouye Solar Telescope (DKIST)/Visible Broadband Imager (VBI) , 2021, Solar Physics.

[44]  Frans Snik,et al.  A multi-domain full-Stokes polarization modulator that is efficient for 300-2500nm spectropolarimetry , 2015, SPIE Optical Engineering + Applications.

[45]  J. Tinbergen Accurate Optical Polarimetry on the Nasmyth Platform , 2007 .

[46]  R Casini,et al.  On the intensity distribution function of blazed reflective diffraction gratings. , 2014, Journal of the Optical Society of America. A, Optics, image science, and vision.

[47]  Christoph U. Keller,et al.  PEPSI spectro-polarimeter for the LBT , 2003, SPIE Astronomical Telescopes + Instrumentation.

[48]  Friedrich Wöger,et al.  Solar adaptive optics with the DKIST: status report , 2014, Astronomical Telescopes and Instrumentation.

[49]  Ny,et al.  A Method to Remove Fringes from Images using Wavelets (with IDL's defringeflat v1.5.5) , 2006, astro-ph/0605609.

[50]  S. P. Littlefair,et al.  THE ASTROPY PROJECT: BUILDING AN INCLUSIVE, OPEN-SCIENCE PROJECT AND STATUS OF THE V2.0 CORE PACKAGE , 2018 .

[51]  M. Semel Spectropolarimetry and polarization-dependent fringes , 2003 .

[52]  D. Harrington,et al.  Polarization Modeling and Predictions for DKIST Part 5: Impacts of enhanced mirror and dichroic coatings on system polarization calibration. , 2019, 1905.10370.

[53]  Frans Snik,et al.  The upgrade of HARPS to a full-Stokes high-resolution spectropolarimeter , 2008, Astronomical Telescopes + Instrumentation.

[54]  S. J. Berukoff,et al.  Calibration development strategies for the Daniel K. Inouye Solar Telescope (DKIST) data center , 2016, Astronomical Telescopes + Instrumentation.

[55]  R. Casini,et al.  Measured performance of shadow-cast coated gratings for spectro-polarimetric applications. , 2018, Applied optics.

[56]  Robert P. Hubbard,et al.  Daniel K. Inouye Solar Telescope optical alignment plan , 2016, Astronomical Telescopes + Instrumentation.

[57]  B. Goodrich,et al.  The adaptive optics and wavefront correction systems for the Advanced Technology Solar Telescope , 2010, Astronomical Telescopes + Instrumentation.

[58]  Christoph U. Keller,et al.  High precision polarimetry with the Advanced Technology Solar Telescope , 2005, SPIE Optics + Photonics.

[59]  D. Elmore,et al.  Polarimetric Littrow Spectrograph - instrument calibration and first measurements , 2005 .

[60]  A. Wittmann,et al.  The instrumental polarization of a Gregory-Coudé telescope , 1991 .

[61]  Salvatore Scuderi,et al.  Optical design of CAOS: a high-resolution spectropolarimeter for the Catania Astrophysical Observatory 0.91-m telescope , 2004, SPIE Astronomical Telescopes + Instrumentation.

[62]  M. Rodenhuis,et al.  The extreme polarimeter: design, performance, first results and upgrades , 2012, Other Conferences.

[63]  F. Snik,et al.  Polarimetry from the ground up , 2007 .

[64]  E. Popow,et al.  PEPSI: the Potsdam Echelle Polarimetric and Spectroscopic Instrument for the LBT , 2008, Astronomical Telescopes + Instrumentation.

[65]  D. Harrington,et al.  Polarization Modeling and Predictions for DKIST Part 4: Calibration Accuracy Over Field of View, Retardance Spatial Uniformity And Achromat Design Sensitivity , 2018, 1811.10321.

[66]  C. Beck,et al.  Inferring telescope polarization properties through spectral lines without linear polarization , 2018, Astronomy & Astrophysics.

[67]  Peter G. Nelson,et al.  Preliminary design of the visible spectro-polarimeter for the Advanced Technology Solar Telescope , 2012, Other Conferences.

[68]  James B. Breckinridge,et al.  Polarization Effects in Reflecting Coronagraphs for White-Light Applications in Astronomy , 2003 .

[69]  David M. Harrington,et al.  Polarization modeling and predictions for DKIST, part 8: calibration polarizer spatial variation impacts , 2021, Journal of Astronomical Telescopes, Instruments, and Systems.

[70]  M. Collados,et al.  Current concept for the 4m European Solar Telescope (EST) optical design , 2010, International Optical Design Conference.

[71]  Kevin P. Reardon,et al.  Petascale cyberinfrastructure for ground-based solar physics: approach of the DKIST data center , 2016, Astronomical Telescopes + Instrumentation.

[72]  David K. Aitken,et al.  Spectral Modulation, or Ripple, in Retardation Plates for Linear and Circular Polarization , 2001 .

[73]  R. Chipman,et al.  Polarized Light and Optical Systems , 2018 .

[74]  Andreas Fischer,et al.  End-to-end simulations of the visible tunable filter for the Daniel K. Inouye Solar Telescope , 2016, Astronomical Telescopes + Instrumentation.

[75]  David Elmore,et al.  Characterization of telescope polarization properties across the visible and near-infrared spectrum Case study: the Dunn Solar Telescope , 2010, 1009.2866.

[76]  Rolf Schlichenmaier,et al.  A polarization model for the German Vacuum Tower Telescope from in situ and laboratory measurements , 2005 .

[77]  James B. Breckinridge,et al.  The effects of instrumental elliptical polarization on stellar point spread function fine structure , 2006, SPIE Astronomical Telescopes + Instrumentation.

[78]  M. Collados,et al.  European Solar Telescope: project status , 2010, Astronomical Telescopes + Instrumentation.

[79]  David M. Harrington,et al.  Daytime sky polarization calibration limitations , 2016, Astronomical Telescopes + Instrumentation.

[80]  Frans Snik Calibration strategies for instrumental polarization at the 10-5 level , 2006, SPIE Astronomical Telescopes + Instrumentation.

[81]  Friedrich Wöger,et al.  Status of the DKIST system for solar adaptive optics , 2016, Astronomical Telescopes + Instrumentation.

[82]  Friedrich Wöger,et al.  DKIST visible broadband imager interference filters , 2014, Astronomical Telescopes and Instrumentation.

[83]  Russell A. Chipman,et al.  Polarization aberration in astronomical telescopes , 2015, SPIE Optical Engineering + Applications.

[84]  Austin Kootz Motor control for 0.1-meter diameter crystal retarders on the Daniel K. Inouye Solar Telescope , 2018, Astronomical Telescopes + Instrumentation.

[85]  David M. Harrington,et al.  Polarization modeling and predictions for DKIST part 3: focal ratio and thermal dependencies of spectral polarization fringes and optic retardance , 2018, 1803.08987.

[86]  C. U. Keller,et al.  Instrumental polarisation at the Nasmyth focus of the E-ELT , 2013, 1312.6148.