Bacteriophage-modified microarrays for the direct impedimetric detection of bacteria.

A novel method is presented for the specific and direct detection of bacteria using bacteriophages as recognition receptors immobilized covalently onto functionalized screen-printed carbon electrode (SPE) microarrays. The SPE networks were functionalized through electrochemical oxidation in acidic media of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) by applying a potential of +2.2 V to the working electrode. Immobilization of T4 bacteriophage onto the SPEs was achieved via EDC by formation of amide bonds between the protein coating of the phage and the electrochemically generated carboxylic groups at the carbon surface. The surface functionalization with EDC, and the binding of phages, was verified by time-of-flight secondary ion mass spectrometry. The immobilized T4 phages were then used to specifically detect E. coli bacteria. The presence of surface-bound bacteria was verified by scanning electron and fluorescence microscopies. Impedance measurements (Nyquist plots) show shifts of the order of 10(4) Omega due to the binding of E. coli bacteria to the T4 phages. No significant change in impedance was observed for control experiments using immobilized T4 phage in the presence of Salmonella. Impedance variations as a function of incubation time show a maximum shift after 20 min, indicating onset of lysis, as also confirmed by fluorescence microscopy. Concentration-response curves yield a detection limit of 10(4) cfu/mL for 50-microL samples.