Detecting sources of resistance to multiple diseases in Argentine maize (Zea mays L.) germplasm

[1]  D. Sampietro,et al.  Map overlapping of QTL for resistance to Fusarium ear rot and associated traits in maize , 2021, Euphytica.

[2]  T. Miedaner,et al.  Global warming and increasing maize cultivation demand comprehensive efforts in disease and insect resistance breeding in north‐western Europe , 2021, Plant Pathology.

[3]  M. G. Pereira,et al.  Selection for papaya resistance to multiple diseases in a base population of recurrent selection , 2021, Euphytica.

[4]  A. von Tiedemann,et al.  Assessment of physiological races of Exserohilum turcicum isolates from maize in Argentina and Brazil , 2021, Tropical Plant Pathology.

[5]  H. Maurer,et al.  Genetic architecture of phenotypic indices for simultaneous improvement of protein content and grain yield in triticale (×triticosecale) , 2021 .

[6]  T. Miedaner,et al.  Genomics-Assisted Breeding for Quantitative Disease Resistances in Small-Grain Cereals and Maize , 2020, International journal of molecular sciences.

[7]  M. Balzarini,et al.  Identifying inbred lines with resistance to endemic diseases in exotic maize germplasm , 2020 .

[8]  D. Makumbi,et al.  Identification and diversity of tropical maize inbred lines with resistance to common rust (Puccinia sorghi Schwein) , 2020, Crop science.

[9]  T. Miedaner,et al.  Intercontinental trials reveal stable QTL for Northern corn leaf blight resistance in Europe and in Brazil , 2020, TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik.

[10]  Yuting Qiu,et al.  Identification of Loci That Confer Resistance to Bacterial and Fungal Diseases of Maize , 2020, G3.

[11]  H. Bouzerzour,et al.  Expected genetic gains from mono trait and indexbased selection in advanced bread wheat (Triticum aestivum L.) populations , 2020, Revista Facultad Nacional de Agronomía Medellín.

[12]  D. Berger,et al.  Time-Course RNAseq Reveals Exserohilum turcicum Effectors and Pathogenicity Determinants , 2020, Frontiers in Microbiology.

[13]  T. Würschum,et al.  Molecular tracking of multiple disease resistance in a winter wheat diversity panel , 2019, Theoretical and Applied Genetics.

[14]  G. Eyherabide,et al.  Mejoramiento genético del perfil de ácidos grasos del aceite de maíz , 2019 .

[15]  P. Balint-Kurti,et al.  The plant hypersensitive response: concepts, control and consequences , 2019, Molecular plant pathology.

[16]  P. Esker,et al.  The global burden of pathogens and pests on major food crops , 2019, Nature Ecology & Evolution.

[17]  M. Plazas,et al.  Occurrence of the complete cycle of Puccinia sorghi Schw. in Argentina and implications on the common corn rust epidemiology , 2018, European Journal of Plant Pathology.

[18]  Yunbi Xu,et al.  Combined linkage and association mapping reveal QTL for host plant resistance to common rust (Puccinia sorghi) in tropical maize , 2018, BMC Plant Biology.

[19]  R. Nelson,et al.  Using Maize Chromosome Segment Substitution Line Populations for the Identification of Loci Associated with Multiple Disease Resistance , 2018, G3: Genes, Genomes, Genetics.

[20]  M. Etcheverry,et al.  Influence of crop residues, matric potential and temperature on growth of Exserohilum turcicum an emerging maize pathogen in Argentina , 2018, Letters in applied microbiology.

[21]  L. Romero Occurrence and Importance of Foliar Diseases on Maize (Zea mays L.) in Central Europe , 2018 .

[22]  Weikai Yan,et al.  Genotype by Yield*Trait (GYT) Biplot: a Novel Approach for Genotype Selection based on Multiple Traits , 2018, Scientific Reports.

[23]  J. C. Machado,et al.  Multitrait index based on factor analysis and ideotype‐design: proposal and application on elephant grass breeding for bioenergy , 2018 .

[24]  Guangxi Wu,et al.  First report of Xanthomonas vasicola pv. vasculorum causing bacteria leaf streak of maize (Zea mays L.) in Argentina. , 2017 .

[25]  T. Miedaner,et al.  Genetics of Resistance and Pathogenicity in the Maize/Setosphaeria turcica Pathosystem and Implications for Breeding , 2017, Front. Plant Sci..

[26]  R. Nelson,et al.  A gene encoding maize caffeoyl-CoA O-methyltransferase confers quantitative resistance to multiple pathogens , 2017, Nature Genetics.

[27]  M. F. H. Munis,et al.  Study of southern corn leaf blight (SCLB) on maize genotypes and its effect on yield , 2017 .

[28]  Peter Balint-Kurti,et al.  Quantitative Disease Resistance: Dissection and Adoption in Maize. , 2017, Molecular plant.

[29]  R. Panstruga,et al.  Editorial: Biotrophic Plant-Microbe Interactions , 2017, Front. Plant Sci..

[30]  Tyr Wiesner-Hanks,et al.  Multiple Disease Resistance in Plants. , 2016, Annual review of phytopathology.

[31]  V. Lia,et al.  Genetic diversity and linkage disequilibrium in the Argentine public maize inbred line collection , 2016, Plant Genetic Resources.

[32]  B. Olukolu,et al.  A Genome-Wide Association Study for Partial Resistance to Maize Common Rust. , 2016, Phytopathology.

[33]  M. J. Diéguez,et al.  Virulence Characterization and Identification of Maize Lines Resistant to Puccinia sorghi Schwein. Present in the Argentine Corn Belt Region. , 2016, Plant disease.

[34]  M. Balestre,et al.  Indirect selection for resistance to ear rot and leaf diseases in maize lines using biplots. , 2015, Genetics and molecular research : GMR.

[35]  Cecilia I. Mandolino,et al.  Genetic relatedness and population structure within the public Argentinean collection of maize inbred lines , 2014 .

[36]  Yunhua Zhang,et al.  Evaluation of maize inbred lines currently used in Chinese breeding programs for resistance to six foliar diseases , 2014 .

[37]  R. Nelson,et al.  Unraveling Genomic Complexity at a Quantitative Disease Resistance Locus in Maize , 2014, Genetics.

[38]  M. E. Otegui,et al.  Classification of Argentine maize landraces in heterotic groups. , 2012 .

[39]  Jinsheng Lai,et al.  Identification and fine mapping of rhm1 locus for resistance to Southern corn leaf blight in maize. , 2012, Journal of integrative plant biology.

[40]  A. Melchinger,et al.  Genome-wide association mapping of flowering time and northern corn leaf blight (Setosphaeria turcica) resistance in a vast commercial maize germplasm set , 2012, BMC Plant Biology.

[41]  B. G. Laviola,et al.  Genetic gains in physic nut using selection indexes , 2012 .

[42]  Meena Kumar INOCULATION METHODS AND DISEASE RATING SCALES FOR MAIZE DISEASES , 2012 .

[43]  I. Laguna,et al.  Variabilidad de Puccinia sorghi en la zona maicera núcleo Argentina , 2011 .

[44]  R. Nelson,et al.  Multivariate analysis of maize disease resistances suggests a pleiotropic genetic basis and implicates a GST gene , 2011, Proceedings of the National Academy of Sciences.

[45]  Peter J. Bradbury,et al.  Genome-wide nested association mapping of quantitative resistance to northern leaf blight in maize , 2011, Proceedings of the National Academy of Sciences.

[46]  H. Piepho Data Transformation in Statistical Analysis of Field Trials with Changing Treatment Variance , 2009 .

[47]  H. Piepho,et al.  BLUP for phenotypic selection in plant breeding and variety testing , 2008, Euphytica.

[48]  T. McMahon,et al.  Updated world map of the Köppen-Geiger climate classification , 2007 .

[49]  J. Holland,et al.  Precise Mapping of Quantitative Trait Loci for Resistance to Southern Leaf Blight, Caused by Cochliobolus heterostrophus Race O, and Flowering Time Using Advanced Intercross Maize Lines , 2007, Genetics.

[50]  Manjit S. Kang,et al.  GGE Biplot vs. AMMI Analysis of Genotype-by-Environment Data , 2007 .

[51]  Brian R. Cullis,et al.  On the design of early generation variety trials with correlated data , 2006 .

[52]  R. Nelson,et al.  The genetic architecture of disease resistance in maize: a synthesis of published studies. , 2006, Phytopathology.

[53]  M. Gonzalez Roya común del maíz : altos niveles de severidad en la zona maicera núcleo , 2005 .

[54]  M. Senior,et al.  Identification and Mapping of Quantitative Trait Loci Conditioning Resistance to Southern Leaf Blight of Maize Caused by Cochliobolus heterostrophus Race O. , 2004, Phytopathology.

[55]  J. Parlevliet Durability of resistance against fungal, bacterial and viral pathogens; present situation , 2002, Euphytica.

[56]  Weikai Yan GGEbiplot—A Windows Application for Graphical Analysis of Multienvironment Trial Data and Other Types of Two-Way Data , 2001 .

[57]  J. Juvik,et al.  Quantitative Trait Loci in Sweet Corn Associated with Partial Resistance to Stewart's Wilt, Northern Corn Leaf Blight, and Common Rust. , 2001, Phytopathology.

[58]  A. Melchinger,et al.  Comparative Quantitative Trait Loci Mapping of Partial Resistance to Puccinia sorghi Across Four Populations of European Flint Maize. , 1998, Phytopathology.

[59]  R. Elston A Weight-Free Index for the Purpose of Ranking or Selection with Respect to Several Traits at a Time , 1963 .

[60]  R. F. Peterson,et al.  A DIAGRAMMATIC SCALE FOR ESTIMATING RUST INTENSITY ON LEAVES AND STEMS OF CEREALS , 1948 .

[61]  Yuting Qiu,et al.  Identification of quantitative trait loci associated with maize resistance to bacterial leaf streak , 2020, Crop Science.

[62]  L. G. Woyann,et al.  Selection indexes based on linear‐bilinear models applied to soybean breeding , 2020 .

[63]  R. Panstruga,et al.  Biotrophic Plant-Microbe Interactions , 2017 .

[64]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[65]  T. Mengiste Plant immunity to necrotrophs. , 2012, Annual review of phytopathology.

[66]  M. McMullen,et al.  Mapping resistance quantitative trait Loci for three foliar diseases in a maize recombinant inbred line population-evidence for multiple disease resistance? , 2010, Phytopathology.

[67]  C. F. Curtiss History , Contribution , and Future of Quantitative Genetics in Plant Breeding : Lessons From Maize , 2007 .

[68]  M. Krakowsky,et al.  Identification of quantitative trait Loci for resistance to southern leaf blight and days to anthesis in a maize recombinant inbred line population. , 2006, Phytopathology.

[69]  Monica M. Morata,et al.  Aptitud combinatoria entre lneas de maz resistentes a Mal de Ro Cuarto , 2003 .

[70]  M. Carson A new gene in maize conferring the "chlorotic halo" reaction to infection by Exserohilum turcicum , 1995 .

[71]  C. I. D. M. D. M. Y. Trigo Managing trials and reporting data for CIMMYT's International Maize Testing Program , 1994 .

[72]  Ramos Romero Lucia Occurrence and Importance of Foliar Diseases on Maize (Zea mays L.) in Central Europe , 2022 .