Extremal subgraphs of random graphs
暂无分享,去创建一个
Konstantinos Panagiotou | Graham R. Brightwell | Angelika Steger | G. Brightwell | A. Steger | K. Panagiotou
[1] G. Brightwell,et al. Extremal Subgraphs of Random Graphs: an Extended Version , 2009, 0908.3778.
[2] Yoshiharu Kohayakawa,et al. Szemerédi’s Regularity Lemma and Quasi-randomness , 2003 .
[3] T. Lu. ON K4-FREE SUBGRAPHS OF RANDOM GRAPHS , 1997 .
[4] Deryk Osthus,et al. For Which Densities are Random Triangle-Free Graphs Almost Surely Bipartite? , 2003, Comb..
[5] Noga Alon,et al. The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.
[6] Alan M. Frieze,et al. Random graphs , 2006, SODA '06.
[7] Miklós Simonovits,et al. Extremal subgraphs of random graphs , 1990, J. Graph Theory.
[8] W. T. Gowers,et al. RANDOM GRAPHS (Wiley Interscience Series in Discrete Mathematics and Optimization) , 2001 .
[9] Yoshiharu Kohayakawa,et al. OnK4-free subgraphs of random graphs , 1997, Comb..
[10] Svante Janson,et al. Random graphs , 2000, ZOR Methods Model. Oper. Res..
[11] B. Bollobás. The evolution of random graphs , 1984 .
[12] Angelika Steger. On the Evolution of Triangle-Free Graphs , 2005, Comb. Probab. Comput..
[13] A. Rbnyi. ON THE EVOLUTION OF RANDOM GRAPHS , 2001 .
[14] Y. Kohayakawa. Szemerédi's regularity lemma for sparse graphs , 1997 .
[15] N. Alon,et al. Wiley‐Interscience Series in Discrete Mathematics and Optimization , 2004 .
[16] P. Erdos,et al. On the evolution of random graphs , 1984 .
[17] Stefanie Gerke,et al. The sparse regularity lemma and its applications , 2005, BCC.
[18] V. Rödl,et al. Arithmetic progressions of length three in subsets of a random set , 1996 .
[19] Stefanie Gerke,et al. A probabilistic counting lemma for complete graphs , 2007, Random Struct. Algorithms.
[20] alcun K. grafo. ASYMPTOTIC ENUMERATION OF Kn-FREE GRAPHS , 2004 .
[21] Yoshiharu Kohayakawa,et al. The Turán Theorem for Random Graphs , 2004, Comb. Probab. Comput..
[22] K. Panagiotou. Colorability properties of random graphs , 2008 .