Extremal subgraphs of random graphs

We prove that there is a constant c > 0, such that whenever p ≥ n‐c, with probability tending to 1 when n goes to infinity, every maximum triangle‐free subgraph of the random graph Gn,p is bipartite. This answers a question of Babai, Simonovits and Spencer (Babai et al., J Graph Theory 14 (1990) 599–622). The proof is based on a tool of independent interest: we show, for instance, that the maximum cut of almost all graphs with M edges, where M ≫ n and M ≤ $(\matrix{ n \cr 2 \cr } )$ /2, is “nearly unique”. More precisely, given a maximum cut C of Gn,M, we can obtain all maximum cuts by moving at most \documentclass{article}\usepackage{mathrsfs, amsmath, amssymb}\pagestyle{empty}\begin{document}\begin{align*}\mathcal{O}(\sqrt{n^3/M})\end{align*}\end{document} vertices between the parts of C. © 2012 Wiley Periodicals, Inc. Random Struct. Alg., 2012

[1]  G. Brightwell,et al.  Extremal Subgraphs of Random Graphs: an Extended Version , 2009, 0908.3778.

[2]  Yoshiharu Kohayakawa,et al.  Szemerédi’s Regularity Lemma and Quasi-randomness , 2003 .

[3]  T. Lu ON K4-FREE SUBGRAPHS OF RANDOM GRAPHS , 1997 .

[4]  Deryk Osthus,et al.  For Which Densities are Random Triangle-Free Graphs Almost Surely Bipartite? , 2003, Comb..

[5]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[6]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[7]  Miklós Simonovits,et al.  Extremal subgraphs of random graphs , 1990, J. Graph Theory.

[8]  W. T. Gowers,et al.  RANDOM GRAPHS (Wiley Interscience Series in Discrete Mathematics and Optimization) , 2001 .

[9]  Yoshiharu Kohayakawa,et al.  OnK4-free subgraphs of random graphs , 1997, Comb..

[10]  Svante Janson,et al.  Random graphs , 2000, ZOR Methods Model. Oper. Res..

[11]  B. Bollobás The evolution of random graphs , 1984 .

[12]  Angelika Steger On the Evolution of Triangle-Free Graphs , 2005, Comb. Probab. Comput..

[13]  A. Rbnyi ON THE EVOLUTION OF RANDOM GRAPHS , 2001 .

[14]  Y. Kohayakawa Szemerédi's regularity lemma for sparse graphs , 1997 .

[15]  N. Alon,et al.  Wiley‐Interscience Series in Discrete Mathematics and Optimization , 2004 .

[16]  P. Erdos,et al.  On the evolution of random graphs , 1984 .

[17]  Stefanie Gerke,et al.  The sparse regularity lemma and its applications , 2005, BCC.

[18]  V. Rödl,et al.  Arithmetic progressions of length three in subsets of a random set , 1996 .

[19]  Stefanie Gerke,et al.  A probabilistic counting lemma for complete graphs , 2007, Random Struct. Algorithms.

[20]  alcun K. grafo ASYMPTOTIC ENUMERATION OF Kn-FREE GRAPHS , 2004 .

[21]  Yoshiharu Kohayakawa,et al.  The Turán Theorem for Random Graphs , 2004, Comb. Probab. Comput..

[22]  K. Panagiotou Colorability properties of random graphs , 2008 .