TIRfinder: A Web Tool for Mining Class II Transposons Carrying Terminal Inverted Repeats
暂无分享,去创建一个
Anna Gambin | Krzysztof Walczak | Jarosław Paszek | Tomasz Gambin | Dariusz Grzebelus | Michał Startek | T. Gambin | A. Gambin | D. Grzebelus | Jarosław Paszek | M. Startek | K. Walczak
[1] Gary Benson,et al. Inverted repeat structure of the human genome: the X-chromosome contains a preponderance of large, highly homologous inverted repeats that contain testes genes. , 2004, Genome research.
[2] Casey M. Bergman,et al. Discovering and detecting transposable elements in genome sequences , 2007, Briefings Bioinform..
[3] J. Casacuberta,et al. Genome-wide analysis of the Emigrant family of MITEs of Arabidopsis thaliana. , 2002, Molecular biology and evolution.
[4] Slawomir Lasota,et al. Diversity and structure of PIF/Harbinger-like elements in the genome of Medicago truncatula , 2007, BMC Genomics.
[5] Céline Loot,et al. Different Strategies to Persist: The pogo-Like Lemi1 Transposon Produces Miniature Inverted-Repeat Transposable Elements or Typical Defective Elements in Different Plant Genomes , 2008, Genetics.
[6] Jacques Nicolas,et al. Genome analysis Suffix-tree analyser ( STAN ) : looking for nucleotidic and peptidic patterns in chromosomes , 2005 .
[7] Stefan Kurtz,et al. LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons , 2008, BMC Bioinformatics.
[8] Jason S. Caronna,et al. Computational prediction and molecular confirmation of Helitron transposons in the maize genome , 2008, BMC Genomics.
[9] Guojun Yang,et al. MAK, a computational tool kit for automated MITE analysis , 2003, Nucleic Acids Res..
[10] Anna Gambin,et al. Population dynamics of miniature inverted-repeat transposable elements (MITEs) in Medicago truncatula. , 2009, Gene.
[11] E. Myers,et al. Basic local alignment search tool. , 1990, Journal of molecular biology.
[12] F. Zhou,et al. MUST: a system for identification of miniature inverted-repeat transposable elements and applications to Anabaena variabilis and Haloquadratum walsbyi. , 2009, Gene.
[13] M. Batzer,et al. Repetitive Elements May Comprise Over Two-Thirds of the Human Genome , 2011, PLoS genetics.
[14] Dawn H. Nagel,et al. The B73 Maize Genome: Complexity, Diversity, and Dynamics , 2009, Science.
[15] J. Jurka,et al. A universal classification of eukaryotic transposable elements implemented in Repbase , 2008, Nature Reviews Genetics.
[16] Stefan Kurtz,et al. REPuter: fast computation of maximal repeats in complete genomes , 1999, Bioinform..
[17] J. Bennetzen,et al. A unified classification system for eukaryotic transposable elements , 2007, Nature Reviews Genetics.
[18] R. Britten. Transposable element insertions have strongly affected human evolution , 2010, Proceedings of the National Academy of Sciences.
[19] S Wright,et al. Transposon diversity in Arabidopsis thaliana. , 2000, Proceedings of the National Academy of Sciences of the United States of America.
[20] Susan R. Wessler,et al. MITE-Hunter: a program for discovering miniature inverted-repeat transposable elements from genomic sequences , 2010, Nucleic acids research.
[21] J. Jurka,et al. Repbase Update, a database of eukaryotic repetitive elements , 2005, Cytogenetic and Genome Research.
[22] A. Cornish-Bowden. Nomenclature for incompletely specified bases in nucleic acid sequences: recommendations 1984. , 1985, Nucleic acids research.
[23] S. Eddy,et al. Automated de novo identification of repeat sequence families in sequenced genomes. , 2002, Genome research.