Stain-free histopathology by programmable supercontinuum pulses

The preparation, staining, visualization, and interpretation of histological images of tissue is well-accepted as the gold standard process for the diagnosis of disease. These methods were developed historically, and are used ubiquitously in pathology, despite being highly time and labor intensive. Here we introduce a unique optical imaging platform and methodology for label-free multimodal multiphoton microscopy that uses a novel photonic crystal fiber source to generate tailored chemical contrast based on programmable supercontinuum pulses. We demonstrate collection of optical signatures of the tumor microenvironment, including evidence of mesoscopic biological organization, tumor cell migration, and (lymph-)angiogenesis collected directly from fresh ex vivo mammary tissue. Acquisition of these optical signatures and other cellular or extracellular features, which are largely absent from histologically processed and stained tissue, combined with an adaptable platform for optical alignment-free programmable-contrast imaging, offers the potential to translate stain-free molecular histopathology into routine clinical use.

[1]  Stephen A. Boppart,et al.  Scalar generalized nonlinear Schrödinger equation-quantified continuum generation in an all-normal dispersion photonic crystal fiber for broadband coherent optical sources , 2010, Optics express.

[2]  Haohua Tu,et al.  Wave-breaking-extended fiber supercontinuum generation for high compression ratio transform-limited pulse compression. , 2012, Optics letters.

[3]  Robert R. Alfano,et al.  Emission in the Region 4000 to 7000 Å Via Four-Photon Coupling in Glass , 1970 .

[4]  A. Manni,et al.  Hormone dependency in N-nitrosomethylurea-induced rat mammary tumors. , 1982, Endocrinology.

[5]  Bruce J Tromberg,et al.  Imaging coronary artery microstructure using second-harmonic and two-photon fluorescence microscopy. , 2004, Biophysical journal.

[6]  Guy Cox,et al.  Second-harmonic imaging of plant polysaccharides. , 2005, Journal of biomedical optics.

[7]  Dong Li,et al.  Two-photon excited hemoglobin fluorescence , 2010, Biomedical optics express.

[8]  J. Thøgersen,et al.  Coherent anti-Stokes Raman scattering microscopy with a photonic crystal fiber based light source , 2003, Conference on Lasers and Electro-Optics, 2003. CLEO '03..

[9]  Alfred Leitenstorfer,et al.  8-fs pulses from a compact Er:fiber system: quantitative modeling and experimental implementation. , 2009, Optics express.

[10]  D. Cheresh,et al.  Tumor angiogenesis: molecular pathways and therapeutic targets , 2011, Nature Medicine.

[11]  Sergey Plotnikov,et al.  Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure , 2012, Nature Protocols.

[12]  Chi-Kuang Sun,et al.  Higher harmonic generation microscopy of in vitro cultured mammal oocytes and embryos. , 2008, Optics express.

[13]  Martin Vogel,et al.  Second harmonic imaging of intrinsic signals in muscle fibers in situ. , 2004, Journal of biomedical optics.

[14]  Alistair Elfick,et al.  A versatile CARS microscope for biological imaging , 2009 .

[15]  R. Buesa Histology: a unique area of the medical laboratory. , 2007, Annals of diagnostic pathology.

[16]  J. Dudley,et al.  Supercontinuum generation in photonic crystal fiber , 2006 .

[17]  Michael Titford,et al.  What May the Future Hold for Histotechnologists , 2012 .

[18]  W. Wadsworth,et al.  Coherent supercontinuum generation in photonic crystal fiber with all-normal group velocity dispersion. , 2011, Optics express.

[19]  D. Wiersma,et al.  Real-time visualization of intracellular hydrodynamics in single living cells. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[20]  A. M. Weinera Femtosecond pulse shaping using spatial light modulators , 2000 .

[21]  W. Webb,et al.  Three‐dimensionally resolved NAD(P)H cellular metabolic redox imaging of the in situ cornea with two‐photon excitation laser scanning microscopy , 1995, Journal of microscopy.

[22]  Judah Folkman,et al.  Angiogenesis in vitro , 1980, Nature.

[23]  X. Xie,et al.  Multicolored Stain-free Histopathology with Coherent Raman Imaging , 2012, Laboratory Investigation.

[24]  Hans Georg Breunig,et al.  In vivo histology: optical biopsies with chemical contrast using clinical multiphoton/coherent anti-Stokes Raman scattering tomography , 2014 .

[25]  Jane A Dickerson,et al.  Current Applications of Liquid Chromatography / Mass Spectrometry in Pharmaceutical Discovery After a Decade of Innovation , 2008 .

[26]  J. C. Lodder,et al.  Label-free live brain imaging and targeted patching with third-harmonic generation microscopy , 2011, Proceedings of the National Academy of Sciences.

[27]  G. Ripandelli,et al.  Optical coherence tomography. , 1998, Seminars in ophthalmology.

[28]  Warren S Warren,et al.  High-resolution in vivo imaging of blood vessels without labeling. , 2007, Optics letters.

[29]  X. Xie,et al.  Imaging Lignin-Downregulated Alfalfa Using Coherent Anti-Stokes Raman Scattering Microscopy , 2010, BioEnergy Research.

[30]  P. Wiseman,et al.  Optimization of malaria detection based on third harmonic generation imaging of hemozoin , 2013, Analytical and Bioanalytical Chemistry.

[31]  W. Webb,et al.  Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[32]  Andreas Volkmer,et al.  Multiplex Coherent Anti-Stokes Raman Scattering Microspectroscopy and Study of Lipid Vesicles , 2002 .

[33]  Ji-Xin Cheng,et al.  A multimodal platform for nonlinear optical microscopy and microspectroscopy. , 2009, Optics express.

[34]  A. Stentz,et al.  Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm , 2000 .

[35]  Ulrich Pohl,et al.  Label-Free 3D Visualization of Cellular and Tissue Structures in Intact Muscle with Second and Third Harmonic Generation Microscopy , 2011, PloS one.

[36]  Dong Li,et al.  In vivo and simultaneous multimodal imaging: Integrated multiplex coherent anti-Stokes Raman scattering and two-photon microscopy , 2010 .

[37]  Wei Min,et al.  Imaging chromophores with undetectable fluorescence by stimulated emission microscopy , 2009, Nature.

[38]  N. Ramanujam,et al.  In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia , 2007, Proceedings of the National Academy of Sciences.

[39]  Yining Zeng,et al.  Label-free, real-time monitoring of biomass processing with stimulated Raman scattering microscopy. , 2010, Angewandte Chemie.

[40]  Wei Min,et al.  Highly specific label-free molecular imaging with spectrally tailored excitation stimulated Raman scattering (STE-SRS) microscopy. , 2011, Nature photonics.

[41]  Yaron Silberberg,et al.  Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy , 2002, Nature.

[42]  P. Carmeliet,et al.  Angiogenesis in cancer and other diseases , 2000, Nature.

[43]  S. Boppart,et al.  Suppressing Short-Term Polarization Noise and Related Spectral Decoherence in All-Normal Dispersion Fiber Supercontinuum Generation , 2015, Journal of Lightwave Technology.

[44]  L. Cantley,et al.  Understanding the Warburg Effect: The Metabolic Requirements of Cell Proliferation , 2009, Science.

[45]  William A Mohler,et al.  Coherent and incoherent SHG in fibrillar cellulose matrices. , 2007, Optics express.

[46]  C. Rueden,et al.  Bmc Medicine Collagen Density Promotes Mammary Tumor Initiation and Progression , 2022 .

[47]  P. Friedl,et al.  Intravital third harmonic generation microscopy of collective melanoma cell invasion , 2012, Intravital.

[48]  Lihong V. Wang,et al.  Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging , 2006, Nature Biotechnology.

[49]  Michael Titford,et al.  A Short History of Histopathology Technique , 2006 .

[50]  W. Jiang,et al.  Lymphangiogenesis and cancer metastasis. , 2011, Frontiers in bioscience.

[51]  David Sutton,et al.  TEXTBOOK OF RADIOLOGY AND IMAGING , 1998 .

[52]  Wei Zheng,et al.  Integrated coherent anti-Stokes Raman scattering and multiphoton microscopy for biomolecular imaging using spectral filtering of a femtosecond laser , 2010 .

[53]  M. Barbacid,et al.  Induction of mammary carcinomas in rats by nitroso-methylurea involves malignant activation of H-ras-1 locus by single point mutations , 1983, Nature.

[54]  Dan Fu,et al.  Nonlinear Absorption Microscopy † , 2009, Photochemistry and photobiology.

[55]  Dong Li,et al.  Time-resolved detection enables standard two-photon fluorescence microscopy for in vivo label-free imaging of microvasculature in tissue. , 2011, Optics letters.

[56]  D Yelin,et al.  Laser scanning third-harmonic-generation microscopy in biology. , 1999, Optics express.

[57]  Charles H. Camp,et al.  High-Speed Coherent Raman Fingerprint Imaging of Biological Tissues , 2014, Nature Photonics.

[58]  Charles P. Lin,et al.  Multiphoton Microscopy of Live Tissues With Ultraviolet Autofluorescence , 2010, IEEE Journal of Selected Topics in Quantum Electronics.

[59]  Tzu-Ming Liu,et al.  Multimodal nonlinear spectral microscopy based on a femtosecond Cr:forsterite laser. , 2001, Optics letters.

[60]  R. Windeler,et al.  Fundamental noise limitations to supercontinuum generation in microstructure fiber. , 2002, Physical review letters.

[61]  Hans C Gerritsen,et al.  Spectrally resolved multiphoton imaging of in vivo and excised mouse skin tissues. , 2007, Biophysical journal.

[62]  Dong Li,et al.  Two-photon autofluorescence microscopy of multicolor excitation. , 2009, Optics letters.

[63]  V. Couderc,et al.  Protein secondary structure imaging with ultrabroadband multiplex coherent anti-Stokes Raman scattering (CARS) microspectroscopy. , 2012, The journal of physical chemistry. B.

[64]  Srinjan Basu,et al.  Label-free live-cell imaging of nucleic acids using stimulated Raman scattering microscopy. , 2012, Chemphyschem : a European journal of chemical physics and physical chemistry.

[65]  Srinjan Basu,et al.  Label-free DNA imaging in vivo with stimulated Raman scattering microscopy , 2015, Proceedings of the National Academy of Sciences.

[66]  B R Masters,et al.  Multiphoton excitation fluorescence microscopy and spectroscopy of in vivo human skin. , 1997, Biophysical journal.

[67]  J. Menéndez,et al.  Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis , 2007, Nature Reviews Cancer.

[68]  W. R. Wiley,et al.  Three-Dimensional Vibrational Imaging by Coherent Anti-Stokes Raman Scattering , 1999 .

[69]  Guillaume Labroille,et al.  Multicolor two-photon tissue imaging by wavelength mixing , 2012, Nature Methods.

[70]  S. González,et al.  Real-time, in vivo confocal reflectance microscopy of basal cell carcinoma. , 2002, Journal of the American Academy of Dermatology.

[71]  P. Vandenabeele,et al.  Reference database of Raman spectra of biological molecules , 2007 .

[72]  Jens Limpert,et al.  Expanding multimodal microscopy by high spectral resolution coherent anti-Stokes Raman scattering imaging for clinical disease diagnostics. , 2013, Analytical chemistry.

[73]  J. Fujimoto,et al.  Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber. , 2001, Optics letters.

[74]  Lu Wei,et al.  Live-cell imaging of alkyne-tagged small biomolecules by stimulated Raman scattering , 2014, Nature Methods.

[75]  Dong Li,et al.  Two-photon excited hemoglobin fluorescence provides contrast mechanism for label-free imaging of microvasculature in vivo. , 2011, Optics letters.

[76]  X. Xie,et al.  Vibrational imaging of lipid droplets in live fibroblast cells with coherent anti-Stokes Raman scattering microscopy Published, JLR Papers in Press, August 16, 2003. DOI 10.1194/jlr.D300022-JLR200 , 2003, Journal of Lipid Research.

[77]  Yaron Silberberg,et al.  Nonlinear scanning laser microscopy by third harmonic generation , 1997 .

[78]  S. Chu,et al.  Nonlinear bio‐photonic crystal effects revealed with multimodal nonlinear microscopy , 2002, Journal of microscopy.

[79]  Alfred Leitenstorfer,et al.  Simultaneous second-harmonic generation, third-harmonic generation, and four-wave mixing microscopy with single sub-8 fs laser pulses , 2011 .

[80]  B. Chaudhuri,et al.  Ductal carcinoma in situ in rat mammary gland. , 1992, The Journal of surgical research.

[81]  D. Dombeck,et al.  Polarized microtubule arrays in apical dendrites and axons , 2008, Proceedings of the National Academy of Sciences.

[82]  Watt W. Webb,et al.  Uniform polarity microtubule assemblies imaged in native brain tissue by second-harmonic generation microscopy , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[83]  M. Nishimura,et al.  Silica-based functional fibers with enhanced nonlinearity and their applications , 1999 .

[84]  T. T. Le,et al.  Coherent anti-Stokes Raman scattering imaging of lipids in cancer metastasis , 2009, BMC Cancer.

[85]  B. Chance,et al.  Oxidation-reduction ratio studies of mitochondria in freeze-trapped samples. NADH and flavoprotein fluorescence signals. , 1979, The Journal of biological chemistry.

[86]  William A Mohler,et al.  Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues. , 2002, Biophysical journal.

[87]  N. Bendsøe,et al.  Multimodal imaging to study the morphochemistry of basal cell carcinoma , 2010, Journal of biophotonics.

[88]  W. Denk,et al.  Deep tissue two-photon microscopy , 2005, Nature Methods.

[89]  Moshe Levi,et al.  Characterization of cholesterol crystals in atherosclerotic plaques using stimulated Raman scattering and second-harmonic generation microscopy. , 2012, Biophysical journal.

[90]  Ji-Xin Cheng,et al.  Label-free molecular imaging of atherosclerotic lesions using multimodal nonlinear optical microscopy. , 2007, Journal of biomedical optics.

[91]  R A Norwood,et al.  Label-free multi-photon imaging using a compact femtosecond fiber laser mode-locked by carbon nanotube saturable absorber. , 2013, Biomedical optics express.

[92]  J. C. Johnson,et al.  Nonlinear chemical imaging microscopy: near-field third harmonic generation imaging of human red blood cells. , 2000, Analytical chemistry.

[93]  J G Fujimoto,et al.  Generation of 5-fs pulses and octave-spanning spectra directly from a Ti:sapphire laser. , 2001, Optics letters.

[94]  K. König,et al.  Multiphoton autofluorescence imaging of intratissue elastic fibers. , 2005, Biomaterials.

[95]  J G Fujimoto,et al.  Sub-two-cycle pulses from a Kerr-lens mode-locked Ti:sapphire laser. , 1999, Optics letters.

[96]  Ji-Xin Cheng,et al.  High-speed vibrational imaging and spectral analysis of lipid bodies by compound Raman microscopy. , 2009, The journal of physical chemistry. B.

[97]  Watt W Webb,et al.  Two-photon fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein. , 2002, Biophysical journal.

[98]  Dan Fu,et al.  Quantitative chemical imaging with multiplex stimulated Raman scattering microscopy. , 2012, Journal of the American Chemical Society.

[99]  Vincent Couderc,et al.  Quantitative CARS molecular fingerprinting of single living cells with the use of the maximum entropy method. , 2010, Angewandte Chemie.

[100]  X. Xie,et al.  Label-free imaging of biomolecules in food products using stimulated Raman microscopy. , 2011, Journal of biomedical optics.

[101]  W. Webb,et al.  Measuring Serotonin Distribution in Live Cells with Three-Photon Excitation , 1997, Science.

[102]  R. Buesa Productivity standards for histology laboratories. , 2010, Annals of diagnostic pathology.

[103]  P. Russell,et al.  Soliton Self-Frequency Shift Cancellation in Photonic Crystal Fibers , 2003, Science.

[104]  R Gauderon,et al.  Simultaneous multichannel nonlinear imaging: combined two-photon excited fluorescence and second-harmonic generation microscopy , 2000, SPIE Photonics Taiwan.

[105]  Anatoly Efimov,et al.  Time-spectrally-resolved ultrafast nonlinear dynamics in small-core photonic crystal fibers: Experiment and modelling. , 2004, Optics express.

[106]  Peter Friedl,et al.  Biological Second and Third Harmonic Generation Microscopy , 2007, Current protocols in cell biology.

[107]  P. Bourgine,et al.  Cell Lineage Reconstruction of Early Zebrafish Embryos Using Label-Free Nonlinear Microscopy , 2010, Science.

[108]  Marcos Dantus,et al.  Multiphoton intrapulse interference. IV. Ultrashort laser pulse spectral phase characterization and compensation. , 2004, Optics letters.

[109]  Overcoming temporal polarization instabilities from the latent birefringence in all-normal dispersion, wave-breaking-extended nonlinear fiber supercontinuum generation. , 2013, Optics express.

[110]  X. Xie,et al.  Video-Rate Molecular Imaging in Vivo with Stimulated Raman Scattering , 2010, Science.

[111]  Giuseppe Musumeci,et al.  Past, present and future: overview on histology and histopathology , 2014 .

[112]  K. Alitalo,et al.  Metastasis: Lymphangiogenesis and cancer metastasis , 2002, Nature Reviews Cancer.

[113]  Alexander M. Heidt,et al.  Pulse preserving flat-top supercontinuum generation in all-normal dispersion photonic crystal fibers , 2010 .

[114]  W. Webb,et al.  Nonlinear magic: multiphoton microscopy in the biosciences , 2003, Nature Biotechnology.

[115]  William A Mohler,et al.  Characterization of the myosin-based source for second-harmonic generation from muscle sarcomeres. , 2006, Biophysical journal.

[116]  L M Loew,et al.  High-resolution nonlinear optical imaging of live cells by second harmonic generation. , 1999, Biophysical journal.

[117]  D. Hanahan,et al.  Hallmarks of Cancer: The Next Generation , 2011, Cell.

[118]  James G. Fujimoto,et al.  Assessment of breast pathologies using nonlinear microscopy , 2014, Proceedings of the National Academy of Sciences.

[119]  Mortazavi,et al.  Supporting Online Material Materials and Methods Figs. S1 to S13 Tables S1 to S3 References Label-free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy , 2022 .

[120]  R. Balaban,et al.  Skeletal muscle NAD(P)H two-photon fluorescence microscopy in vivo: topology and optical inner filters. , 2005, Biophysical journal.

[121]  Robert Windeler,et al.  Ultrashort pulse propagation in air-silica microstructure fiber. , 2002, Optics express.

[122]  Virginijus Barzda,et al.  Visualization of mitochondria in cardiomyocytes by simultaneous harmonic generation and fluorescence microscopy. , 2005, Optics express.

[123]  K R Wilson,et al.  Third harmonic generation microscopy. , 1998, Optics express.

[124]  Meenakshi Singh,et al.  A Comparison of the Histopathology of Premalignant and Malignant Mammary Gland Lesions Induced in Sexually Immature Rats with those Occurring in the Human , 2000, Laboratory Investigation.

[125]  Warren S Warren,et al.  Pump-Probe Imaging Differentiates Melanoma from Melanocytic Nevi , 2011, Science Translational Medicine.

[126]  W. Denk,et al.  Two-photon laser scanning fluorescence microscopy. , 1990, Science.

[127]  Jean Rehbinder,et al.  Multimodal nonlinear optical microscopy with shaped 10 fs pulses. , 2014, Optics express.

[128]  R. Buesa Staffing benchmarks for histology laboratories. , 2010, Annals of diagnostic pathology.

[129]  R. Buesa Histology without formalin? , 2008, Annals of diagnostic pathology.

[130]  R. Buesa,et al.  Histology without xylene. , 2009, Annals of diagnostic pathology.

[131]  Kazuyoshi Itoh,et al.  High-speed molecular spectral imaging of tissue with stimulated Raman scattering , 2012, Nature Photonics.

[132]  Paolo P. Provenzano,et al.  Collagen reorganization at the tumor-stromal interface facilitates local invasion , 2006, BMC medicine.

[133]  Andrew Ridsdale,et al.  Hyperspectral multimodal CARS microscopy in the fingerprint region , 2014, Journal of biophotonics.

[134]  S. Boppart,et al.  Multimodal Nonlinear Microscopy by Shaping a Fiber Supercontinuum From 900 to 1160 nm , 2012, IEEE Journal of Selected Topics in Quantum Electronics.

[135]  Ping Wang,et al.  Label-free quantitative imaging of cholesterol in intact tissues by hyperspectral stimulated Raman scattering microscopy. , 2013, Angewandte Chemie.

[136]  F. Wise,et al.  In vivo three-photon microscopy of subcortical structures within an intact mouse brain , 2012, Nature Photonics.

[137]  Alfred Leitenstorfer,et al.  Widely tunable sub-30-fs pulses from a compact erbium-doped fiber source. , 2004, Optics letters.

[138]  Scott L. Delp,et al.  Minimally invasive high-speed imaging of sarcomere contractile dynamics in mice and humans , 2008, Nature.

[139]  Leslie M Loew,et al.  Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms , 2003, Nature Biotechnology.

[140]  Julian Moger,et al.  The elastin network: its relationship with collagen and cells in articular cartilage as visualized by multiphoton microscopy , 2009, Journal of anatomy.

[141]  M. Gruebele,et al.  Molecular histopathology by spectrally reconstructed nonlinear interferometric vibrational imaging. , 2010, Cancer research.

[142]  Bruno Moulia,et al.  In vivo modulation of morphogenetic movements in Drosophila embryos with femtosecond laser pulses. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[143]  Haohua Tu,et al.  Coherent fiber supercontinuum for biophotonics , 2013, Laser & photonics reviews.

[144]  Andrew Evans,et al.  Digital imaging in pathology: whole-slide imaging and beyond. , 2013, Annual review of pathology.

[145]  Mikala Egeblad,et al.  Matrix Crosslinking Forces Tumor Progression by Enhancing Integrin Signaling , 2009, Cell.

[146]  R. Buczyński Photonic Crystal Fibers , 2004 .

[147]  A. Fabre,et al.  Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy , 2005, Nature Methods.

[148]  Nicole Fassbinder,et al.  Textbook Of Radiology And Imaging , 2016 .

[149]  Andreas Volkmer,et al.  Vibrational Imaging Based On Stimulated Raman Scattering Microscopy , 2009 .

[150]  Alfred Leitenstorfer,et al.  Ultrabroadband background-free coherent anti-Stokes Raman scattering microscopy based on a compact Er:fiber laser system. , 2010, Optics letters.

[151]  Paola Borri,et al.  Simultaneous hyperspectral differential-CARS, TPF and SHG microscopy with a single 5 fs Ti:Sa laser. , 2013, Optics express.

[152]  B. Jalali,et al.  Optical rogue waves , 2007, Nature.

[153]  Goro Mizutani,et al.  Detection of starch granules in a living plant by optical second harmonic microscopy , 2000 .

[154]  Hung-Che Chen,et al.  Integrated multiple multi-photon imaging and Raman spectroscopy for characterizing structure-constituent correlation of tissues. , 2008, Optics express.

[155]  Rick Trebino,et al.  Cross-correlation frequency resolved optical gating analysis of broadband continuum generation in photonic crystal fiber: simulations and experiments. , 2002, Optics express.

[156]  Fu-Jen Kao,et al.  The use of optical parametric oscillator for harmonic generation and two‐photon UV fluorescence microscopy , 2004, Microscopy research and technique.

[157]  X. Xie,et al.  Rapid, Label-Free Detection of Brain Tumors with Stimulated Raman Scattering Microscopy , 2013, Science Translational Medicine.

[158]  T. T. Le,et al.  Label-free Imaging of Arterial Cells and Extracellular Matrix Using a Multimodal CARS Microscope. , 2008, Optics communications.

[159]  Xiaoming Liu,et al.  Nonlinear polarization dynamics in a weakly birefringent all-normal dispersion photonic crystal fiber: toward a practical coherent fiber supercontinuum laser , 2012, Optics express.

[160]  Andrew Ridsdale,et al.  Optimally chirped multimodal CARS microscopy based on a single Ti:sapphire oscillator. , 2009, Optics express.

[161]  P. Friedl,et al.  Collective cell migration in morphogenesis, regeneration and cancer , 2009, Nature Reviews Molecular Cell Biology.

[162]  A. Manni,et al.  Hormone Dependency in iV-Nitrosomethylurea-Induced Rat Mammary Tumors* , 1982 .

[163]  Chi‐Kuang Sun,et al.  Epi-third and second harmonic generation microscopic imaging of abnormal enamel. , 2008, Optics express.

[164]  Andrey V. Gorbach,et al.  Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres , 2007 .

[165]  Gengfeng Zheng,et al.  Laser-scanning coherent anti-Stokes Raman scattering microscopy and applications to cell biology. , 2002, Biophysical journal.

[166]  Arkady Major,et al.  Intermyofilament dynamics of myocytes revealed by second harmonic generation microscopy. , 2008, Journal of biomedical optics.

[167]  Rüdiger Paschotta,et al.  Pulse compression with supercontinuum generation in microstructure fibers , 2005 .

[168]  Riyi Shi,et al.  Coherent anti-stokes Raman scattering imaging of axonal myelin in live spinal tissues. , 2005, Biophysical journal.

[169]  Cesar Jauregui,et al.  Widely tuneable fiber optical parametric amplifier for coherent anti-Stokes Raman scattering microscopy. , 2012, Optics express.

[170]  B. Tromberg,et al.  Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[171]  Tsung-Han Tsai,et al.  Studies of χ(2)/χ(3) Tensors in Submicron-Scaled Bio-Tissues by Polarization Harmonics Optical Microscopy , 2004 .