Germs, genomes and genealogies.

Genetic diversity in pathogen species contains information about evolutionary and epidemiological processes, including the origins and history of disease, the nature of the selective forces acting on pathogen genes and the role of recombination in generating genetic novelty. Here, we review recent developments in these fields and compare the use of population genetic, or population-model based, approaches to phylogenetic, or population-model free, methodologies. We show how simple epidemiological models can be related to the ancestral, or coalescent, process underlying samples from pathogen species, enabling detailed inference about pathogen biology from patterns of molecular variation.

[1]  N. Ferguson,et al.  The effect of antibody-dependent enhancement on the transmission dynamics and persistence of multiple-strain pathogens. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[2]  M. Stephens,et al.  Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. , 2003, Genetics.

[3]  M. Stephens,et al.  Modeling linkage disequilibrium and identifying recombination hotspots using single-nucleotide polymorphism data. , 2003, Genetics.

[4]  J. Margolick,et al.  Influence of Random Genetic Drift on Human Immunodeficiency Virus Type 1 env Evolution During Chronic Infection , 2004, Genetics.

[5]  John Maynard Smith,et al.  The hitch-hiking effect of a favourable gene. , 1974, Genetical research.

[6]  K. Lythgoe Effects of Acquired Immunity and Mating Strategy on the Genetic Structure of Parasite Populations , 2002, The American Naturalist.

[7]  Y. Guan,et al.  Genesis of a highly pathogenic and potentially pandemic H5N1 influenza virus in eastern Asia , 2004, Nature.

[8]  R. Nielsen,et al.  Detecting Positively Selected Amino Acid Sites Using Posterior Predictive P-Values , 2001, Pacific Symposium on Biocomputing.

[9]  Molly Przeworski,et al.  The signature of positive selection at randomly chosen loci. , 2002, Genetics.

[10]  A. Sasaki,et al.  Evolutionary pattern of intra-host pathogen antigenic drift: effect of cross-reactivity in immune response. , 1997, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[11]  Justin C. Fay,et al.  Hitchhiking under positive Darwinian selection. , 2000, Genetics.

[12]  P. Awadalla The evolutionary genomics of pathogen recombination , 2003, Nature Reviews Genetics.

[13]  O. Pybus,et al.  Inference of viral evolutionary rates from molecular sequences. , 2003, Advances in parasitology.

[14]  I. Brown,et al.  Recombination Resulting in Virulence Shift in Avian Influenza Outbreak, Chile , 2004, Emerging infectious diseases.

[15]  Anne-Mieke Vandamme,et al.  Mapping Sites of Positive Selection and Amino Acid Diversification in the HIV Genome , 2004, Genetics.

[16]  Edward C. Holmes,et al.  High-Resolution Phylogenetic Analysis of Hepatitis C Virus Adaptation and Its Relationship to Disease Progression , 2004, Journal of Virology.

[17]  Anne-Mieke Vandamme,et al.  Tracing the origin and history of the HIV-2 epidemic , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[18]  M. Schenker,et al.  Frequent interspecific genetic exchange between commensal neisseriae and Neisseria meningitidis , 2000, Molecular microbiology.

[19]  O. Pybus,et al.  Unifying the Epidemiological and Evolutionary Dynamics of Pathogens , 2004, Science.

[20]  A. Lapedes,et al.  Timing the ancestor of the HIV-1 pandemic strains. , 2000, Science.

[21]  M. Kreitman,et al.  Adaptive protein evolution at the Adh locus in Drosophila , 1991, Nature.

[22]  Alexei J Drummond,et al.  Estimating mutation parameters, population history and genealogy simultaneously from temporally spaced sequence data. , 2002, Genetics.

[23]  Graham Coop,et al.  Ancestral inference on gene trees under selection. , 2004, Theoretical population biology.

[24]  R. Nielsen,et al.  Effect of recombination on the accuracy of the likelihood method for detecting positive selection at amino acid sites. , 2003, Genetics.

[25]  D. Conway,et al.  Evidence for diversifying selection on erythrocyte-binding antigens of Plasmodium falciparum and P. vivax. , 2003, Genetics.

[26]  D. Conway,et al.  Allele frequency-based analyses robustly map sequence sites under balancing selection in a malaria vaccine candidate antigen. , 2003, Genetics.

[27]  R. Hudson,et al.  A test of neutral molecular evolution based on nucleotide data. , 1987, Genetics.

[28]  J. Wakeley,et al.  Gene genealogies in a metapopulation. , 2001, Genetics.

[29]  M. Achtman,et al.  Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[30]  J. M. Smith,et al.  How clonal are bacteria? , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[31]  P. Donnelly,et al.  Estimating recombination rates from population genetic data. , 2001, Genetics.

[32]  A. Jetzt,et al.  Human Immunodeficiency Virus Type 1 Recombination: Rate, Fidelity, and Putative Hot Spots , 2002, Journal of Virology.

[33]  G. Shaw,et al.  Dynamics of HIV-1 recombination in its natural target cells , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[34]  David L. Robertson,et al.  Comparative Study of Adaptive Molecular Evolution in Different Human Immunodeficiency Virus Groups and Subtypes , 2004, Journal of Virology.

[35]  M. Stephens,et al.  Traces of Human Migrations in Helicobacter pylori Populations , 2003, Science.

[36]  J. H. Edwards,et al.  Handbook of statistical genetics, 2nd edition , 2006, Journal of Genetics.

[37]  P. Donnelly,et al.  High recombination rate in herpes simplex virus type 1 natural populations suggests significant co-infection. , 2004, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.

[38]  A. Lapedes,et al.  Mapping the Antigenic and Genetic Evolution of Influenza Virus , 2004, Science.

[39]  P. Fearnhead,et al.  A coalescent-based method for detecting and estimating recombination from gene sequences. , 2002, Genetics.

[40]  D. Husmeier,et al.  Detecting recombination in 4-taxa DNA sequence alignments with Bayesian hidden Markov models and Markov chain Monte Carlo. , 2003, Molecular biology and evolution.

[41]  F. Tajima Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. , 1989, Genetics.

[42]  J. Hein,et al.  Consequences of recombination on traditional phylogenetic analysis. , 2000, Genetics.

[43]  C. J-F,et al.  THE COALESCENT , 1980 .

[44]  M. Suchard,et al.  Oh brother, where art thou? A Bayes factor test for recombination with uncertain heritage. , 2002, Systematic biology.

[45]  M. Nordborg,et al.  Coalescent Theory , 2019, Handbook of Statistical Genomics.

[46]  Marcus W Feldman,et al.  Stable association between strains of Mycobacterium tuberculosis and their human host populations. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[47]  J. T. Williams,et al.  Microsatellite markers reveal a spectrum of population structures in the malaria parasite Plasmodium falciparum. , 2000, Molecular biology and evolution.

[48]  Yir-Chung Liu,et al.  Recombination and migration of Cryphonectria hypovirus 1 as inferred from gene genealogies and the coalescent. , 2004, Genetics.

[49]  K. Strimmer,et al.  A novel exploratory method for visual recombination detection , 2003, Genome Biology.

[50]  T Gojobori,et al.  A method for detecting positive selection at single amino acid sites. , 1999, Molecular biology and evolution.

[51]  David A. Steinhauer,et al.  Genetics of influenza viruses. , 2002 .

[52]  Allen G. Rodrigo,et al.  Immune-Mediated Positive Selection Drives Human Immunodeficiency Virus Type 1 Molecular Variation and Predicts Disease Duration , 2002, Journal of Virology.

[53]  M. Przeworski Estimating the time since the fixation of a beneficial allele. , 2003, Genetics.

[54]  Todd M. Allen,et al.  HIV evolution: CTL escape mutation and reversion after transmission , 2004, Nature Medicine.

[55]  E. Anderson Hudson et al. , 1977 .

[56]  M Achtman,et al.  Fit genotypes and escape variants of subgroup III Neisseria meningitidis during three pandemics of epidemic meningitis , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[57]  O. Pybus,et al.  The epidemiology and iatrogenic transmission of hepatitis C virus in Egypt: a Bayesian coalescent approach. , 2003, Molecular biology and evolution.

[58]  Jon A Yamato,et al.  Maximum likelihood estimation of recombination rates from population data. , 2000, Genetics.

[59]  S. Williamson,et al.  Adaptation in the env gene of HIV-1 and evolutionary theories of disease progression. , 2003, Molecular biology and evolution.

[60]  K. Crandall,et al.  The causes and consequences of HIV evolution , 2004, Nature Reviews Genetics.

[61]  K. Crandall,et al.  Recombination in evolutionary genomics. , 2002, Annual review of genetics.

[62]  J. M. Smith,et al.  The hitch-hiking effect of a favourable gene. , 1974, Genetical research.

[63]  R. Griffiths,et al.  Bounds on the minimum number of recombination events in a sample history. , 2003, Genetics.

[64]  Anne-Mieke Vandamme,et al.  U.S. Human Immunodeficiency Virus Type 1 Epidemic: Date of Origin, Population History, and Characterization of Early Strains , 2003, Journal of Virology.

[65]  F. Ayala,et al.  Malaria's Eve: evidence of a recent population bottleneck throughout the world populations of Plasmodium falciparum. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[66]  E. J. Feil,et al.  Carried Meningococci in the Czech Republic: a Diverse Recombining Population , 2000, Journal of Clinical Microbiology.

[67]  N. Ling The Mathematical Theory of Infectious Diseases and its applications , 1978 .

[68]  D. Balding,et al.  Approximate Bayesian computation in population genetics. , 2002, Genetics.

[69]  W. Li,et al.  Statistical tests of neutrality of mutations. , 1993, Genetics.

[70]  N. Ferguson,et al.  Chaos, persistence, and evolution of strain structure in antigenically diverse infectious agents. , 1998, Science.

[71]  R. Nielsen,et al.  Likelihood models for detecting positively selected amino acid sites and applications to the HIV-1 envelope gene. , 1998, Genetics.

[72]  J C Wootton,et al.  A genetic map and recombination parameters of the human malaria parasite Plasmodium falciparum. , 1999, Science.

[73]  James I Mullins,et al.  Potential impact of recombination on sitewise approaches for detecting positive natural selection. , 2003, Genetical research.

[74]  R. Hudson Properties of a neutral allele model with intragenic recombination. , 1983, Theoretical population biology.

[75]  N. Ferguson,et al.  Ecological and immunological determinants of influenza evolution , 2003, Nature.

[76]  T. Anderson Mapping drug resistance genes in Plasmodium falciparum by genome-wide association. , 2004, Current drug targets. Infectious disorders.

[77]  W Stephan,et al.  The hitchhiking effect on the site frequency spectrum of DNA polymorphisms. , 1995, Genetics.

[78]  John R Pannell COALESCENCE IN A METAPOPULATION WITH RECURRENT LOCAL EXTINCTION AND RECOLONIZATION , 2003, Evolution; international journal of organic evolution.

[79]  D. Balding,et al.  Handbook of statistical genetics , 2004 .

[80]  Joseph P. Bielawski,et al.  Widespread Adaptive Evolution in the Human Immunodeficiency Virus Type 1 Genome , 2003, Journal of Molecular Evolution.

[81]  R. Nielsen Statistical tests of selective neutrality in the age of genomics , 2001, Heredity.

[82]  M. Kreitman,et al.  Methods to detect selection in populations with applications to the human. , 2000, Annual review of genomics and human genetics.

[83]  P. Lemey,et al.  The Molecular Population Genetics of HIV-1 Group O , 2004, Genetics.