Integrating deep learning-based data assimilation and hydrogeophysical data for improved monitoring of DNAPL source zones during remediation

[1]  P. Kitanidis,et al.  Hydrogeophysical Characterization of Nonstationary DNAPL Source Zones by Integrating a Convolutional Variational Autoencoder and Ensemble Smoother , 2021, Water Resources Research.

[2]  Eric Darve,et al.  Recent developments in fast and scalable inverse modeling and data assimilation methods in hydrology , 2020 .

[3]  P. Kitanidis,et al.  Improved Characterization of DNAPL Source Zones via Sequential Hydrogeophysical Inversion of Hydraulic‐Head, Self‐Potential and Partitioning Tracer Data , 2020, Water Resources Research.

[4]  Alexander Y. Sun,et al.  Inversion of Time‐Lapse Seismic Reservoir Monitoring Data Using CycleGAN: A Deep Learning‐Based Approach for Estimating Dynamic Reservoir Property Changes , 2020, Journal of Geophysical Research: Solid Earth.

[5]  M. Clara De Paolis Kaluza,et al.  Subsurface Source Zone Characterization and Uncertainty Quantification Using Discriminative Random Fields , 2020, Water Resources Research.

[6]  A. Revil,et al.  Multiscale induced polarization tomography in hydrogeophysics: A new approach , 2019, Advances in Water Resources.

[7]  Marco Aurélio Cavalcanti Pacheco,et al.  Towards a Robust Parameterization for Conditioning Facies Models Using Deep Variational Autoencoders and Ensemble Smoother , 2018, Comput. Geosci..

[8]  Henry Lau,et al.  Design of optimal groundwater monitoring well network using stochastic modeling and reduced‐rank spatial prediction , 2017 .

[9]  Eric Darve,et al.  Smoothing‐based compressed state Kalman filter for joint state‐parameter estimation: Applications in reservoir characterization and CO2 storage monitoring , 2017 .

[10]  M. Cardiff,et al.  Oscillatory hydraulic testing as a strategy for NAPL source zone monitoring: Laboratory experiments. , 2017, Journal of contaminant hydrology.

[11]  Peter K. Kitanidis,et al.  Scalable subsurface inverse modeling of huge data sets with an application to tracer concentration breakthrough data from magnetic resonance imaging , 2016 .

[12]  W. Nowak,et al.  Identification of contaminant source architectures—A statistical inversion that emulates multiphase physics in a computationally practicable manner , 2016 .

[13]  Paolo Salandin,et al.  Coupled and uncoupled hydrogeophysical inversions using ensemble Kalman filter assimilation of ERT‐monitored tracer test data , 2015 .

[14]  Wolfgang Nowak,et al.  Predicting DNAPL mass discharge and contaminated site longevity probabilities: Conceptual model and high‐resolution stochastic simulation , 2015 .

[15]  J. Gerhard,et al.  Evaluating four-dimensional time-lapse electrical resistivity tomography for monitoring DNAPL source zone remediation. , 2014, Journal of contaminant hydrology.

[16]  Aaron C. Courville,et al.  Generative adversarial networks , 2014, Commun. ACM.

[17]  Eric Darve,et al.  A Kalman filter powered by H2 ‐matrices for quasi‐continuous data assimilation problems , 2014, ArXiv.

[18]  Wolfgang Nowak,et al.  A method for implementing Dirichlet and third‐type boundary conditions in PTRW simulations , 2014 .

[19]  Max Welling,et al.  Auto-Encoding Variational Bayes , 2013, ICLR.

[20]  Denis M. O'Carroll,et al.  Coupled simulation of DNAPL infiltration and dissolution in three‐dimensional heterogeneous domains: Process model validation , 2013 .

[21]  P. Kitanidis,et al.  Aquifer heterogeneity characterization with oscillatory pumping: Sensitivity analysis and imaging potential , 2013 .

[22]  J. Gerhard,et al.  A new coupled model for simulating the mapping of dense nonaqueous phase liquids using electrical resistivity tomography , 2013 .

[23]  Albert C. Reynolds,et al.  Ensemble smoother with multiple data assimilation , 2013, Comput. Geosci..

[24]  E. Miller,et al.  A geometric approach to joint inversion with applications to contaminant source zone characterization , 2013, 1303.5109.

[25]  Charles J Newell,et al.  Groundwater Remediation: The Next 30 Years , 2012, Ground water.

[26]  H. Franssen,et al.  Parameter estimation by ensemble Kalman filters with transformed data: Approach and application to hydraulic tomography , 2012 .

[27]  Rosemary Knight,et al.  Application of an extended Kalman filter approach to inversion of time‐lapse electrical resistivity imaging data for monitoring recharge , 2011 .

[28]  Olaf A. Cirpka,et al.  Fully coupled hydrogeophysical inversion of synthetic salt tracer experiments , 2010 .

[29]  Linda M Abriola,et al.  Predicting DNAPL mass discharge from pool-dominated source zones. , 2010, Journal of contaminant hydrology.

[30]  R. Glass,et al.  Interphase mass transfer in variable aperture fractures: Controlling parameters and proposed constitutive relationships , 2009 .

[31]  Dean S. Oliver,et al.  An Iterative Ensemble Kalman Filter for Multiphase Fluid Flow Data Assimilation , 2007 .

[32]  Tian-Chyi J. Yeh,et al.  Hydraulic/partitioning tracer tomography for characterization of dense nonaqueous phase liquid source zones , 2007 .

[33]  P. Goovaerts,et al.  A geostatistical approach for quantification of contaminant mass discharge uncertainty using multilevel sampler measurements , 2007 .

[34]  J. Gerhard,et al.  Field scale impacts of spatially correlated relative permeability in heterogeneous multiphase systems , 2007 .

[35]  E. Sudicky,et al.  Transition Probability/Markov Chain Analyses of DNAPL Source Zones and Plumes , 2006, Ground water.

[36]  Kurt D. Pennell,et al.  Estimating mass discharge from dense nonaqueous phase liquid source zones using upscaled mass transfer coefficients: An evaluation using multiphase numerical simulations , 2006 .

[37]  B. Minsker,et al.  Spatial Interpolation Methods for Nonstationary Plume Data , 2004, Ground water.

[38]  Michael C Kavanaugh,et al.  The DNAPL Remediation Challenge: Is There a Case for Source Depletion? , 2003 .

[39]  Jason I. Gerhard,et al.  Relative permeability characteristics necessary for simulating DNAPL infiltration, redistribution, and immobilization in saturated porous media , 2003 .

[40]  W. Graham,et al.  Estimation of spatially variable residual nonaqueous phase liquid saturations in nonuniform flow fields using partitioning tracer data , 2000 .

[41]  P.A. Karjalainen,et al.  A Kalman filter approach to track fast impedance changes in electrical impedance tomography , 1998, IEEE Transactions on Biomedical Engineering.

[42]  Brian Berkowitz,et al.  A generalized growth model for simulating initial migration of dense non‐aqueous phase liquids , 1998 .

[43]  P. Kitanidis Introduction to Geostatistics: Applications in Hydrogeology , 1997 .

[44]  G. Evensen Sequential data assimilation with a nonlinear quasi‐geostrophic model using Monte Carlo methods to forecast error statistics , 1994 .

[45]  C. R. Dietrich,et al.  A fast and exact method for multidimensional gaussian stochastic simulations , 1993 .

[46]  Jack C. Parker,et al.  A model for hysteretic constitutive relations governing multiphase flow: 3. Refinements and numerical simulations , 1989 .

[47]  J. Bear Dynamics of Fluids in Porous Media , 1975 .

[48]  P. A. Domenico,et al.  Water from low‐permeability sediments and land subsidence , 1965 .

[49]  G. E. Archie The electrical resistivity log as an aid in determining some reservoir characteristics , 1942 .

[50]  Geoffrey E. Hinton,et al.  Deep Learning , 2015 .

[51]  J. Gerhard,et al.  Improved time-lapse electrical resistivity tomography monitoring of dense non-aqueous phase liquids with surface-to-horizontal borehole arrays , 2015 .

[52]  L. Abriola,et al.  Source Remediation Challenges , 2012 .

[53]  D. Oliver,et al.  Ensemble Randomized Maximum Likelihood Method as an Iterative Ensemble Smoother , 2011, Mathematical Geosciences.

[54]  John A. Cherry,et al.  Dense Chlorinated Solvents and other DNAPLs in Groundwater , 1996 .