Hölder exponents of irregular signals and local fractional derivatives

[1]  D. Lieberman,et al.  Fourier analysis , 2004, Journal of cataract and refractive surgery.

[2]  Kiran M. Kolwankar,et al.  Fractional differentiability of nowhere differentiable functions and dimensions. , 1996, Chaos.

[3]  M. Zähle THE AVERAGE FRACTAL DIMENSION AND PROJECTIONS OF MEASURES AND SETS IN Rn , 1995 .

[4]  Bacry,et al.  Oscillating singularities in locally self-similar functions. , 1995, Physical review letters.

[5]  Rudolf H. Riedi,et al.  An Improved Multifractal Formalism and Self Similar Measures , 1995 .

[6]  G. Eyink Besov spaces and the multifractal hypothesis , 1995 .

[7]  Matthias Hollschneider More on the analysis of local regularity through wavelets , 1994 .

[8]  The geometry of turbulent advection: sharp estimates for the dimensions of level sets , 1994 .

[9]  Fogedby Lévy flights in random environments. , 1994, Physical review letters.

[10]  I. Daubechies,et al.  ON THE THERMODYNAMIC FORMALISM FOR MULTIFRACTAL FUNCTIONS , 1994 .

[11]  Solomon,et al.  Observation of anomalous diffusion and Lévy flights in a two-dimensional rotating flow. , 1993, Physical review letters.

[12]  K. Miller,et al.  An Introduction to the Fractional Calculus and Fractional Differential Equations , 1993 .

[13]  Theo F. Nonnenmacher,et al.  Fox function representation of non-debye relaxation processes , 1993 .

[14]  E. Bacry,et al.  Multifractal formalism for fractal signals: The structure-function approach versus the wavelet-transform modulus-maxima method. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[15]  Fractional differentiation in the self-affine case I – Random functions , 1992 .

[16]  Guy Jumarie,et al.  A Fokker-Planck equation of fractional order with respect to time , 1992 .

[17]  Sreenivasan,et al.  Scale-invariant multiplier distributions in turbulence. , 1992, Physical review letters.

[18]  R. Mauldin,et al.  Multifractal decompositions of Moran fractals , 1992 .

[19]  Hilfer Multiscaling and the classification of continuous phase transitions. , 1992, Physical review letters.

[20]  P. Tchamitchian,et al.  Pointwise analysis of Riemann's “nondifferentiable” function , 1991 .

[21]  Thermodynamic scaling derived via analytic continuation from the classification of Ehrenfest , 1991 .

[22]  Constantin,et al.  Fractal geometry of isoscalar surfaces in turbulence: Theory and experiments. , 1991, Physical review letters.

[23]  J. Bouchaud,et al.  Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications , 1990 .

[24]  Ott,et al.  Anomalous diffusion in "living polymers": A genuine Levy flight? , 1990, Physical review letters.

[25]  A. Sudbery Consistent multiparameter quantisation of GL(n) , 1990 .

[26]  Benoit B. Mandelbrot,et al.  Multifractal measures, especially for the geophysicist , 1989 .

[27]  S. Krantz Fractal geometry , 1989 .

[28]  T. Vicsek Fractal Growth Phenomena , 1989 .

[29]  W. Schneider,et al.  Fractional diffusion and wave equations , 1989 .

[30]  C. Meneveau,et al.  Simple multifractal cascade model for fully developed turbulence. , 1987, Physical review letters.

[31]  Jensen,et al.  Scaling structure and thermodynamics of strange sets. , 1987, Physical review. A, General physics.

[32]  Bruce J. West,et al.  Lévy dynamics of enhanced diffusion: Application to turbulence. , 1987, Physical review letters.

[33]  Pierre Collet,et al.  The dimension spectrum of some dynamical systems , 1987 .

[34]  W. Wyss The fractional diffusion equation , 1986 .

[35]  R. Daniel Mauldin,et al.  On the Hausdorff dimension of some graphs , 1986 .

[36]  Jensen,et al.  Erratum: Fractal measures and their singularities: The characterization of strange sets , 1986, Physical review. A, General physics.

[37]  Michael Ghil,et al.  Turbulence and predictability in geophysical fluid dynamics and climate dynamics , 1985 .

[38]  Roberto Benzi,et al.  On the multifractal nature of fully developed turbulence and chaotic systems , 1984 .

[39]  Michael F. Shlesinger,et al.  Williams-watts dielectric relaxation: A fractal time stochastic process , 1984 .

[40]  James A. Yorke,et al.  The Lyapunov dimension of a nowhere differentiable attracting torus , 1984, Ergodic Theory and Dynamical Systems.

[41]  L. F. Abbott,et al.  Dimension of a Quantum-Mechanical Path. , 1981 .

[42]  M. Berry,et al.  On the Weierstrass-Mandelbrot fractal function , 1980, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[43]  B. Ross,et al.  A BRIEF HISTORY AND EXPOSITION OF THE FUNDAMENTAL THEORY OF FRACTIONAL CALCULUS , 1975 .

[44]  J. Cooper SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONS , 1973 .

[45]  T. Osler Taylor’s Series Generalized for Fractional Derivatives and Applications , 1971 .

[46]  J. Gerver More on the Differentiability of the Riemann Function , 1971 .

[47]  B. Mandelbrot,et al.  Fractional Brownian Motions, Fractional Noises and Applications , 1968 .

[48]  G. Welland Fractional differentiation of functions with lacunary Fourier series , 1968 .

[49]  E. Stein,et al.  On the Fractional Differentiability of Functions , 1965 .

[50]  R. Feynman,et al.  Quantum Mechanics and Path Integrals , 1965 .

[51]  H. D. Ursell,et al.  Sets of Fractional Dimensions (V) : On Dimensional Numbers of Some continuous Curves , 1937 .

[52]  G. Hardy Weierstrass’s non-differentiable function , 1916 .

[53]  J. Littlewood,et al.  Some problems of diophantine approximation , 1914 .