Hatching time for monotreme immunology

The sequencing of the platypus genome has spurred investigations into the characterisation of the monotreme immune response. As the mostdivergentof extant mammals, the characterisation of the monotreme immune repertoire allows us to trace the evolutionary history of immunity in mammals and provide insights into the immune gene complement of ancestral mammals. The immune system of monotremes has remained largely uncharacterised due to the lack of specific immunological reagents and limited access to animals for experimentation. Early immunological studies focussed on the anatomy and physiology of the lymphoid system in the platypus. More recent molecular studies have focussed on characterisation of individual immunoglobulin, T-cell receptor and MHC genes in both the platypus and short-beaked echidna. Here, we review the published literature on the monotreme immune gene repertoire and provide new data generated from genome analysis on cytokines, Fc receptors and immunoglobulins. We present an overview of key gene families responsible for innate and adaptive immunity including the cathelicidins, defensins, T-cell receptors and the major histocompatibility complex (MHC) Class I and Class II antigens. We comment on the usefulness of these sequences for future studies into immunity, health and disease in monotremes.

[1]  M. Renfree,et al.  The mammalian yolk sac placenta. , 2009, Journal of experimental zoology. Part B, Molecular and developmental evolution.

[2]  Anthony T Papenfuss,et al.  Defensins and the convergent evolution of platypus and reptile venom genes. , 2008, Genome research.

[3]  J. Robert,et al.  The Xenopus FcR family demonstrates continually high diversification of paired receptors in vertebrate evolution , 2008, BMC Evolutionary Biology.

[4]  Kerry A. Daly,et al.  Identification, characterization and expression of cathelicidin in the pouch young of tammar wallaby (Macropus eugenii). , 2008, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology.

[5]  M. Baker,et al.  Comparative genomic analysis and evolution of the T cell receptor loci in the opossum Monodelphis domestica , 2008, BMC Genomics.

[6]  B. Davidson Movers and shakers: evolution and development of the mesoderm. , 2008, Journal of experimental zoology. Part B, Molecular and developmental evolution.

[7]  K. Nicholas,et al.  Lactation transcriptomics in the Australian marsupial, Macropus eugenii: transcript sequencing and quantification , 2007, BMC Genomics.

[8]  Juliane C. Dohm,et al.  Disruption and pseudoautosomal localization of the major histocompatibility complex in monotremes , 2007, Genome Biology.

[9]  M. Nei,et al.  MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. , 2007, Molecular biology and evolution.

[10]  T. Speed,et al.  Characterization of the opossum immune genome provides insights into the evolution of the mammalian immune system. , 2007, Genome research.

[11]  K. Lindblad-Toh,et al.  A unique T cell receptor discovered in marsupials , 2007, Proceedings of the National Academy of Sciences.

[12]  Michal Linial,et al.  Novel families of toxin-like peptides in insects and mammals: a computational approach. , 2007, Journal of molecular biology.

[13]  Kate E. Jones,et al.  The delayed rise of present-day mammals , 1990, Nature.

[14]  R. Davis Fc receptor-like molecules. , 2007, Annual review of immunology.

[15]  A. Najakshin,et al.  Species-specific evolution of the FcR family in endothermic vertebrates , 2007, Immunogenetics.

[16]  B. Sutton,et al.  The first avian Ig-like Fc receptor family member combines features of mammalian FcR and FCRL , 2007, Immunogenetics.

[17]  D. Kordis,et al.  Phylogenomic analysis of the L1 retrotransposons in Deuterostomia. , 2006, Systematic biology.

[18]  A. Papenfuss,et al.  In silico identification of opossum cytokine genes suggests the complexity of the marsupial immune system rivals that of eutherian mammals , 2006, Immunome research.

[19]  R. Hancock,et al.  Cationic host defense (antimicrobial) peptides. , 2006, Current opinion in immunology.

[20]  Anthony T Papenfuss,et al.  Reconstructing an Ancestral Mammalian Immune Supercomplex from a Marsupial Major Histocompatibility Complex , 2006, PLoS biology.

[21]  Sue Povey,et al.  Gene map of the extended human MHC , 2004, Nature Reviews Genetics.

[22]  J. Graves,et al.  Resolution and evolution of the duck-billed platypus karyotype with an X1Y1X2Y2X3Y3X4Y4X5Y5 male sex chromosome constitution. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[23]  M. Verstegen,et al.  A functional polymeric immunoglobulin receptor in chicken (Gallus gallus) indicates ancient role of secretory IgA in mucosal immunity. , 2004, The Biochemical journal.

[24]  L. Hellman,et al.  Isolation of monotreme T-cell receptor α and β chains , 2004, Immunogenetics.

[25]  G. Harrison,et al.  Type I interferon genes from the egg‐laying mammal, Tachyglossus aculeatus (short‐beaked echidna) , 2004, Immunology and cell biology.

[26]  L. Hellman,et al.  Immunoglobulin genetics of Ornithorhynchus anatinus (platypus) and Tachyglossus aculeatus (short-beaked echidna). , 2003, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.

[27]  B. Munday,et al.  Antibody response to sheep red blood cells in platypus and echidna. , 2003, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.

[28]  Toyoyuki Takada,et al.  Genomic organization of the mammalian MHC. , 2003, Annual review of immunology.

[29]  L. Hellman,et al.  Evolution of the major histocompatibility complex: Isolation of class II β cDNAs from two monotremes, the platypus and the short-beaked echidna , 2003, Immunogenetics.

[30]  L. Hellman,et al.  Characterization of beta(2)-microglobulin coding sequence from three non-placental mammals: the duckbill platypus, the short-beaked echidna, and the grey short-tailed opossum. , 2003, Developmental and comparative immunology.

[31]  L. Hellman,et al.  Echidna IgA supports mammalian unity and traditional Therian relationship , 2002, Mammalian Genome.

[32]  L. Hellman,et al.  Evidence for an early appearance of modern post‐switch immunoglobulin isotypes in mammalian evolution (II); cloning of IgE, IgG1 and IgG2 from a monotreme, the duck‐billed platypus, Ornithorhynchus anatinus , 2002, European journal of immunology.

[33]  L. Hellman,et al.  The major histocompatibility complex in monotremes: an analysis of the evolution of Mhc class I genes across all three mammalian subclasses , 2002, Immunogenetics.

[34]  L. Hellman,et al.  Heavy Chain V Region Diversity in the Duck-Billed Platypus (Ornithorhynchus anatinus): Long and Highly Variable Complementarity-Determining Region 3 Compensates for Limited Germline Diversity1 , 2002, The Journal of Immunology.

[35]  Balaji Ramanathan,et al.  Cathelicidins: microbicidal activity, mechanisms of action, and roles in innate immunity. , 2002, Microbes and infection.

[36]  L. Hellman,et al.  Characterization of immunoglobulin gamma 1 from a monotreme, Tachyglossus aculeatus , 2002, Immunogenetics.

[37]  P. Temple-Smith,et al.  Uncertain breeding: a short history of reproduction in monotremes. , 2001, Reproduction, fertility, and development.

[38]  H. Nakauchi,et al.  Fcα/µ receptor is a single gene-family member closely related to polymeric immunoglobulin receptor encoded on Chromosome 1 , 2001, Immunogenetics.

[39]  C. Burge,et al.  Computational inference of homologous gene structures in the human genome. , 2001, Genome research.

[40]  R. Gennaro,et al.  Structural and Functional Analysis of Horse Cathelicidin Peptides , 2001, Antimicrobial Agents and Chemotherapy.

[41]  J. Haynes The marsupial and monotreme thymus, revisited , 2001 .

[42]  H. Nakauchi,et al.  Fcα/μ receptor mediates endocytosis of IgM-coated microbes , 2000, Nature Immunology.

[43]  J. Old,et al.  Development of the immune system and immunological protection in marsupial pouch young. , 2000, Developmental and comparative immunology.

[44]  M. Nei,et al.  Origins and divergence times of mammalian class II MHC gene clusters. , 2000, The Journal of heredity.

[45]  C. Auffray,et al.  The chicken B locus is a minimal essential major histocompatibility complex , 1999, Nature.

[46]  M. Flajnik,et al.  Two ancient allelic lineages at the single classical class I locus in the Xenopus MHC. , 1999, Journal of immunology.

[47]  S. Boscolo,et al.  Novel cathelicidins in horse leukocytes , 1999 .

[48]  J. Connolly,et al.  Histological and immunohistological investigation of lymphoid tissue in the platypus (Ornithorhynchus anatinus) , 1999, Journal of anatomy.

[49]  G. Beck Macrokines:invertebrate cytokine-like molecules? , 1998, Frontiers in bioscience : a journal and virtual library.

[50]  W. H. Stone,et al.  Absence of a significant mixed lymphocyte reaction in a marsupial (Monodelphis domestica). , 1998, Laboratory animal science.

[51]  D. Burkin,et al.  Localization and genomic organization of sheep antimicrobial peptide genes. , 1998, Gene.

[52]  M. Zanetti,et al.  Structural organization of the bovine cathelicidin gene family and identification of a novel member 1 , 1997, FEBS letters.

[53]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[54]  B. Arp,et al.  HLA-DMA and -DMB genes are both required for MHC class II/peptide complex formation in antigen-presenting cells , 1994, Nature.

[55]  William R. Taylor,et al.  The rapid generation of mutation data matrices from protein sequences , 1992, Comput. Appl. Biosci..

[56]  D. Rowlands,et al.  The immune response of adult opossums (Didelphis virginiana) to the bacteriophage f2. , 1970, Immunology.

[57]  E. Diener,et al.  Phylogenetic studies on the immune response. II. The immune response of the Australian echidna Tachyglossus aculeatus. , 1967, Immunology.

[58]  E. Diener,et al.  Immune System in a Monotreme: Studies on the Australian Echidna (Tachyglossus aculeatus) , 1965, Nature.

[59]  Miriam K. Konkel,et al.  Tumour invasion and metastasis initiated by microRNA-10b in breast cancer , 2008, Nature.

[60]  L. Hellman,et al.  TCR gamma chain diversity in the spleen of the duckbill platypus (Ornithorhynchus anatinus). , 2006, Developmental and comparative immunology.

[61]  J. Trowsdale “Both man & bird & beast”: comparative organization of MHC genes , 2004, Immunogenetics.

[62]  L. Hellman,et al.  Platypus immunoglobulin M and the divergence of the two extant monotreme lineages , 2003 .

[63]  M. Kasahara,et al.  Identification of the rat IgA Fc receptor encoded in the leukocyte receptor complex , 2003, Immunogenetics.

[64]  Sean R. Eddy,et al.  Profile hidden Markov models , 1998, Bioinform..

[65]  M. Renfree,et al.  Reproductive physiology of marsupials: Breeding biology of marsupials by family , 1987 .