Improved Low-Degree Testing and its Applications

NP = PCP(log n, 1) and related results crucially depend upon the close connection between the probability with which a function passes a low degree test and the distance of this function to the nearest degree d polynomial. In this paper we study a test proposed by Rubinfeld and Sudan [30]. The strongest previously known connection for this test states that a function passes the test with probability δ for some δ > 7/8 iff the function has agreement ≈ δ with a polynomial of degree d. We present a new, and surprisingly strong, analysis which shows that the preceding statement is true for arbitrarily small ≈, provided the field size is polynomially larger than d/δ. The analysis uses a version of Hilbert irreducibility, a tool of algebraic geometry.As a consequence we obtain an alternate construction for the following proof system: A constant prover 1-round proof system for NP languages in which the verifier uses O(log n) random bits, receives answers of size O(log n) bits, and has an error probability of at most % MathType!Translator!2!1!AMS LaTeX.tdl!TeX -- AMS-LaTeX! % MathType!MTEF!2!1!+- % feaafeart1ev1aaatCvAUfeBSn0BKvguHDwzZbqefeKCPfgBGuLBPn % 2BKvginnfarmqr1ngBPrgitLxBI9gBamXvP5wqSXMqHnxAJn0BKvgu % HDwzZbqegm0B1jxALjhiov2DaeHbuLwBLnhiov2DGi1BTfMBaebbnr % fifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY-Hhbbf9v8qqaqFr0xc9 % pk0xbba9q8WqFfea0-yr0RYxir-Jbba9q8aq0-yq-He9q8qqQ8frFv % e9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaacaaIYaWa % aWbaaSqabeaacqGHsislciGGSbGaai4BaiaacEgadaahaaadbeqaai % aaigdacqGHsislcqGHiiIZaaWccaWGUbaaaaaa!4CB1!$$ 2^{{ - \log ^{{1 - \in }} n}} $$. Such a proof system, which implies the NP-hardness of approximating Set Cover to within Ω(log n) factors, has already been obtained by Raz and Safra [29]. Raz and Safra obtain their result by giving a strong analysis, in the sense described above, of a new low-degree test that they present.A second consequence of our analysis is a self tester/corrector for any buggy program that (supposedly) computes a polynomial over a finite field. If the program is correct only on δ fraction of inputs where % MathType!Translator!2!1!AMS LaTeX.tdl!TeX -- AMS-LaTeX! % MathType!MTEF!2!1!+- % feaafeart1ev1aaatCvAUfeBSn0BKvguHDwzZbqefeKCPfgBGuLBPn % 2BKvginnfarmqr1ngBPrgitLxBI9gBamXvP5wqSXMqHnxAJn0BKvgu % HDwzZbqegm0B1jxALjhiov2DaeHbuLwBLnhiov2DGi1BTfMBaebbnr % fifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY-Hhbbf9v8qqaqFr0xc9 % pk0xbba9q8WqFfea0-yr0RYxir-Jbba9q8aq0-yq-He9q8qqQ8frFv % e9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaacqaH0oaz % cqGH9aqpcaaIXaGaai4lamaaemaabaGaamOraaGaay5bSlaawIa7am % aaCaaaleqabaGaeyicI4maaOGaeSOAI0JaaGimaiaac6cacaaI1aaa % aa!50F9!$$ \delta = 1/{\left| F \right|}^{ \in } \ll 0.5 $$, then the tester/corrector determines δ and generates % MathType!Translator!2!1!AMS LaTeX.tdl!TeX -- AMS-LaTeX! % MathType!MTEF!2!1!+- % feaafeart1ev1aaatCvAUfeBSn0BKvguHDwzZbqefeKCPfgBGuLBPn % 2BKvginnfarmqr1ngBPrgitLxBI9gBamXvP5wqSXMqHnxAJn0BKvgu % HDwzZbqegm0B1jxALjhiov2DaeHbuLwBLnhiov2DGi1BTfMBaebbnr % fifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY-Hhbbf9v8qqaqFr0xc9 % pk0xbba9q8WqFfea0-yr0RYxir-Jbba9q8aq0-yq-He9q8qqQ8frFv % e9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaacaWGpbWa % aeWaaeaadaWcaaqaaiaaigdaaeaacqaH0oazaaaacaGLOaGaayzkaa % aaaa!4880!$$ O{\left( {\frac{1} {\delta }} \right)} $$ values for every input, such that one of them is the correct output. In fact, our results yield something stronger: Given the buggy program, we can construct % MathType!Translator!2!1!AMS LaTeX.tdl!TeX -- AMS-LaTeX! % MathType!MTEF!2!1!+- % feaafeart1ev1aaatCvAUfeBSn0BKvguHDwzZbqefeKCPfgBGuLBPn % 2BKvginnfarmqr1ngBPrgitLxBI9gBamXvP5wqSXMqHnxAJn0BKvgu % HDwzZbqegm0B1jxALjhiov2DaeHbuLwBLnhiov2DGi1BTfMBaebbnr % fifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY-Hhbbf9v8qqaqFr0xc9 % pk0xbba9q8WqFfea0-yr0RYxir-Jbba9q8aq0-yq-He9q8qqQ8frFv % e9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaacaWGpbWa % aeWaaeaadaWcaaqaaiaaigdaaeaacqaH0oazaaaacaGLOaGaayzkaa % aaaa!4880!$$ O{\left( {\frac{1} {\delta }} \right)} $$ randomized programs such that one of them is correct on every input, with high probability. Such a strong self-corrector is a useful tool in complexity theory—with some applications known.

[1]  László Lovász,et al.  Interactive proofs and the hardness of approximating cliques , 1996, JACM.

[2]  Ronitt Rubinfeld,et al.  Robust Characterizations of Polynomials with Applications to Program Testing , 1996, SIAM J. Comput..

[3]  Gábor Tardos Multi-prover Encoding Schemes and Three-prover Proof Systems , 1996, J. Comput. Syst. Sci..

[4]  Luca Trevisan,et al.  Pseudorandom generators without the XOR Lemma , 1999, Electron. Colloquium Comput. Complex..

[5]  Carsten Lund,et al.  Proof verification and the hardness of approximation problems , 1998, JACM.

[6]  Jacob T. Schwartz Probabilistic algorithms for verification of polynomial identities (invited) , 1979, EUROSAM.

[7]  Mihir Bellare,et al.  Free bits, PCPs and non-approximability-towards tight results , 1995, Proceedings of IEEE 36th Annual Foundations of Computer Science.

[8]  Sanjeev Arora,et al.  Probabilistic checking of proofs: a new characterization of NP , 1998, JACM.

[9]  Erich Kaltofen,et al.  Polynomial-Time Reductions from Multivariate to Bi- and Univariate Integral Polynomial Factorization , 1985, SIAM J. Comput..

[10]  Ronitt Rubinfeld,et al.  Reconstructing Algebraic Functions from Mixed Data , 1998, SIAM J. Comput..

[11]  László Lovász,et al.  Two-prover one-round proof systems: their power and their problems (extended abstract) , 1992, STOC '92.

[12]  Ran Raz,et al.  A parallel repetition theorem , 1995, STOC '95.

[13]  Sanjeev Arora Probabilistic checking of proofs and hardness of approximation problems , 1995 .

[14]  Madhu Sudan,et al.  Decoding of Reed Solomon Codes beyond the Error-Correction Bound , 1997, J. Complex..

[15]  Avi Wigderson,et al.  P = BPP if E requires exponential circuits: derandomizing the XOR lemma , 1997, STOC '97.

[16]  Erich Kaltofen Effective Noether irreducibility forms and applications , 1991, STOC '91.

[17]  Leonid A. Levin,et al.  Checking computations in polylogarithmic time , 1991, STOC '91.

[18]  Uriel Feige,et al.  Impossibility results for recycling random bits in two-prover proof systems , 1995, STOC '95.

[19]  Carsten Lund,et al.  Algebraic methods for interactive proof systems , 1992, JACM.

[20]  Carsten Lund,et al.  On the hardness of approximating minimization problems , 1994, JACM.

[21]  Erich Kaltofen Effective Hilbert Irreducibility , 1985, Inf. Control..

[22]  Manuel Blum,et al.  Self-testing/correcting with applications to numerical problems , 1990, STOC '90.

[23]  Ronitt Rubinfeld,et al.  Learning Polynomials with Queries: The Highly Noisy Case , 2000, SIAM J. Discret. Math..

[24]  Ran Raz,et al.  A sub-constant error-probability low-degree test, and a sub-constant error-probability PCP characterization of NP , 1997, STOC '97.