Homogenization of First-Order Equations with $$(u/\varepsilon)$$ -Periodic Hamiltonians. Part I: Local Equations

In this paper, we present a result of homogenization of first-order Hamilton–Jacobi equations with ($$u/\varepsilon$$)-periodic Hamiltonians. On the one hand, under a coercivity assumption on the Hamiltonian (and some natural regularity assumptions), we prove an ergodicity property of this equation and the existence of nonperiodic approximate correctors. On the other hand, the proof of the convergence of the solution, usually based on the introduction of a perturbed test function in the spirit of Evans’s work, uses here a twisted perturbed test function for a higher-dimensional problem.

[1]  Livio C. Piccinini Homogeneization problems for ordinary differential equations , 1978 .

[2]  Guy Barles,et al.  On the Large Time Behavior of Solutions of Hamilton-Jacobi Equations , 2000, SIAM J. Math. Anal..

[3]  O. Ladyženskaja Linear and Quasilinear Equations of Parabolic Type , 1968 .

[4]  Panagiotis E. Souganidis,et al.  Homogenization of “Viscous” Hamilton–Jacobi Equations in Stationary Ergodic Media , 2005 .

[5]  G. Barles Solutions de viscosité des équations de Hamilton-Jacobi , 1994 .

[6]  Henri Berestycki,et al.  Front propagation in periodic excitable media , 2002 .

[7]  H. Ishii Homogenization of the Cauchy Problem for Hamilton-Jacobi Equations , 1999 .

[8]  Jean-Michel Roquejoffre,et al.  Comportement asymptotique des solutions d'quations de Hamilton-Jacobi monodimensionnelles , 1998 .

[9]  Martino Bardi,et al.  Viscosity Solutions Methods for Singular Perturbations in Deterministic and Stochastic Control , 2001, SIAM J. Control. Optim..

[10]  Stefan Müller,et al.  Homogenization of nonconvex integral functionals and cellular elastic materials , 1987 .

[11]  Guy Barles,et al.  Some counterexamples on the asymptotic behavior of the solutions of Hamilton–Jacobi equations , 2000 .

[12]  L. Evans The perturbed test function method for viscosity solutions of nonlinear PDE , 1989, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[13]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[14]  Panagiotis E. Souganidis,et al.  Homogenization of fully nonlinear, uniformly elliptic and parabolic partial differential equations in stationary ergodic media , 2005 .

[15]  Some homogenization results for non-coercive Hamilton–Jacobi equations , 2006, math/0605619.

[16]  M. Bardi,et al.  Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations , 1997 .

[17]  P. Lions,et al.  User’s guide to viscosity solutions of second order partial differential equations , 1992, math/9207212.

[18]  P. Lions Generalized Solutions of Hamilton-Jacobi Equations , 1982 .

[19]  C. Imbert A non-local regularization of first order Hamilton–Jacobi equations , 2005 .

[20]  Guy Barles,et al.  Space-Time Periodic Solutions and Long-Time Behavior of Solutions to Quasi-linear Parabolic Equations , 2001, SIAM J. Math. Anal..

[21]  Régis Monneau,et al.  Homogenization of First Order Equations with (u/ϵ)-Periodic Hamiltonians Part II: Application to Dislocations Dynamics , 2008 .

[22]  Luc Tartar,et al.  Nonlocal Effects Induced by Homogenization , 1989 .

[23]  François Murat,et al.  Remarques sur l'homogénéisation de certains problèmes quasi-linéaires , 1982 .

[24]  L. Tartar Homogenization and hyperbolicity , 1997 .

[25]  J. Droniou,et al.  Fractal First-Order Partial Differential Equations , 2006 .

[26]  Henri Berestycki,et al.  On the method of moving planes and the sliding method , 1991 .

[27]  L. Evans Periodic homogenisation of certain fully nonlinear partial differential equations , 1992, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[28]  A. Fathi Sur la convergence du semi-groupe de Lax-Oleinik , 1998 .

[29]  G. Barles,et al.  Large time behavior of fronts governed by eikonal equations , 2003 .

[30]  M. Bardi,et al.  Singular Perturbations of Nonlinear Degenerate Parabolic PDEs: a General Convergence Result , 2003 .

[31]  P. Souganidis Stochastic homogenization of Hamilton–Jacobi equations and some applications , 1999 .

[32]  Tamir Tassa,et al.  Homogenization of Two-Dimensional Linear Flows with Integral Invariance , 1997, SIAM J. Appl. Math..