Homogenization of First-Order Equations with $$(u/\varepsilon)$$ -Periodic Hamiltonians. Part I: Local Equations
暂无分享,去创建一个
[1] Livio C. Piccinini. Homogeneization problems for ordinary differential equations , 1978 .
[2] Guy Barles,et al. On the Large Time Behavior of Solutions of Hamilton-Jacobi Equations , 2000, SIAM J. Math. Anal..
[3] O. Ladyženskaja. Linear and Quasilinear Equations of Parabolic Type , 1968 .
[4] Panagiotis E. Souganidis,et al. Homogenization of “Viscous” Hamilton–Jacobi Equations in Stationary Ergodic Media , 2005 .
[5] G. Barles. Solutions de viscosité des équations de Hamilton-Jacobi , 1994 .
[6] Henri Berestycki,et al. Front propagation in periodic excitable media , 2002 .
[7] H. Ishii. Homogenization of the Cauchy Problem for Hamilton-Jacobi Equations , 1999 .
[8] Jean-Michel Roquejoffre,et al. Comportement asymptotique des solutions d'quations de Hamilton-Jacobi monodimensionnelles , 1998 .
[9] Martino Bardi,et al. Viscosity Solutions Methods for Singular Perturbations in Deterministic and Stochastic Control , 2001, SIAM J. Control. Optim..
[10] Stefan Müller,et al. Homogenization of nonconvex integral functionals and cellular elastic materials , 1987 .
[11] Guy Barles,et al. Some counterexamples on the asymptotic behavior of the solutions of Hamilton–Jacobi equations , 2000 .
[12] L. Evans. The perturbed test function method for viscosity solutions of nonlinear PDE , 1989, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[13] A. Bensoussan,et al. Asymptotic analysis for periodic structures , 1979 .
[14] Panagiotis E. Souganidis,et al. Homogenization of fully nonlinear, uniformly elliptic and parabolic partial differential equations in stationary ergodic media , 2005 .
[15] Some homogenization results for non-coercive Hamilton–Jacobi equations , 2006, math/0605619.
[16] M. Bardi,et al. Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations , 1997 .
[17] P. Lions,et al. User’s guide to viscosity solutions of second order partial differential equations , 1992, math/9207212.
[18] P. Lions. Generalized Solutions of Hamilton-Jacobi Equations , 1982 .
[19] C. Imbert. A non-local regularization of first order Hamilton–Jacobi equations , 2005 .
[20] Guy Barles,et al. Space-Time Periodic Solutions and Long-Time Behavior of Solutions to Quasi-linear Parabolic Equations , 2001, SIAM J. Math. Anal..
[21] Régis Monneau,et al. Homogenization of First Order Equations with (u/ϵ)-Periodic Hamiltonians Part II: Application to Dislocations Dynamics , 2008 .
[22] Luc Tartar,et al. Nonlocal Effects Induced by Homogenization , 1989 .
[23] François Murat,et al. Remarques sur l'homogénéisation de certains problèmes quasi-linéaires , 1982 .
[24] L. Tartar. Homogenization and hyperbolicity , 1997 .
[25] J. Droniou,et al. Fractal First-Order Partial Differential Equations , 2006 .
[26] Henri Berestycki,et al. On the method of moving planes and the sliding method , 1991 .
[27] L. Evans. Periodic homogenisation of certain fully nonlinear partial differential equations , 1992, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[28] A. Fathi. Sur la convergence du semi-groupe de Lax-Oleinik , 1998 .
[29] G. Barles,et al. Large time behavior of fronts governed by eikonal equations , 2003 .
[30] M. Bardi,et al. Singular Perturbations of Nonlinear Degenerate Parabolic PDEs: a General Convergence Result , 2003 .
[31] P. Souganidis. Stochastic homogenization of Hamilton–Jacobi equations and some applications , 1999 .
[32] Tamir Tassa,et al. Homogenization of Two-Dimensional Linear Flows with Integral Invariance , 1997, SIAM J. Appl. Math..