A numerical analysis of the geniculocortical input to striate cortex in the monkey.

Using data that are available in various publications, a quantitative analysis has been made of the geniculocortical input to layer IVC of the macaque striate cortex. The data suggest that only 1.3-1.9% of the excitatory, or asymmetric synapses in layer IVC alpha of striate cortex are provided by the neurons of the magnocellular layers of the LGN. This amounts to only 18-40 of the 1000-2100 asymmetric synapses that the average layer IVC alpha neuron receives. The parvicellular afferents to layer IVC beta, on the other hand, provide 3.7-8.7% of the asymmetric synapses formed by the average layer IVC beta neuron, or 37-191 synapses to each neuron. If it is assumed that the boutons in the geniculocortical axonal plexuses are evenly spread, it can be calculated that the input to an individual layer IVC neuron is provided by some 24 axonal plexuses. This is regardless of whether the neuron lies in layer IVC alpha or in IVC beta. This calculation suggests that a single axonal plexus provides not more than one or two of the excitatory synapses received by an individual layer IVC alpha neuron, and between one and eight excitatory synapses for a layer IVC beta neuron. Consequently, it is unlikely that the response properties of a particular cortical neuron are dominated by its input from a single geniculate neuron. Since the geniculocortical input essentially determines the response properties of neurons in layer IV of macaque striate cortex, it is surprising that this input amounts to such a small number of synapses to an individual neuron, although we obtained a somewhat similar result in our earlier quantitative analysis of the geniculate input to the striate cortex of the cat (Peters and Payne, 1993). But it has to be questioned whether the low values obtained are correct. Interestingly, the geniculocortical input to cortex has been largely neglected in favor of analyses of intracortical circuitry, but in view of the basic importance of this afferent input, it is suggested that more quantitative data about it should be generated, so that a better assessment can be made of its extent.

[1]  le Gros Clark We,et al.  The laminar organization and cell content of the lateral geniculate body in the monkey , 1941 .

[2]  D. Whitteridge,et al.  The representation of the visual field on the cerebral cortex in monkeys , 1961, The Journal of physiology.

[3]  D. Hubel,et al.  Receptive fields and functional architecture of monkey striate cortex , 1968, The Journal of physiology.

[4]  T. Powell,et al.  An experimental study of the termination of the lateral geniculo–cortical pathway in the cat and monkey , 1971, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[5]  D. Hubel,et al.  Laminar and columnar distribution of geniculo‐cortical fibers in the macaque monkey , 1972, The Journal of comparative neurology.

[6]  J. Lund Organization of neurons in the visual cortex, area 17, of the monkey (Macaca mulatta) , 1973, The Journal of comparative neurology.

[7]  D H Hubel,et al.  Autoradiographic demonstration of ocular-dominance columns in the monkey striate cortex by means of transneuronal transport. , 1974, Brain research.

[8]  D. Hubel,et al.  Sequence regularity and geometry of orientation columns in the monkey striate cortex , 1974, The Journal of comparative neurology.

[9]  D. Hubel,et al.  The pattern of ocular dominance columns in macaque visual cortex revealed by a reduced silver stain , 1975, The Journal of comparative neurology.

[10]  L. Benevento,et al.  Extrageniculate projections to layers VI and I of striate cortex (area 17) in the rhesus monkey (Macaca mulatta) , 1975, Brain Research.

[11]  P. Schiller,et al.  Quantitative studies of single-cell properties in monkey striate cortex. I. Spatiotemporal organization of receptive fields. , 1976, Journal of neurophysiology.

[12]  A. Hendrickson,et al.  Pathways between striate cortex and subcortical regions in Macaca mulatta and Saimiri sciureus: Evidence for a reciprocal pulvinar connection , 1976, Experimental Neurology.

[13]  C. Gilbert,et al.  Laminar patterns of geniculocortical projection in the cat , 1976, Brain Research.

[14]  D. Hubel,et al.  Projection into the visual field of ocular dominance columns in macaque monkey , 1977, Brain Research.

[15]  T. Wiesel,et al.  Functional architecture of macaque monkey visual cortex , 1977 .

[16]  M. Ogren,et al.  The neurological organization of pathways between the dorsal lateral geniculate nucleus and visual cortex in old world and new world primates , 1978, The Journal of comparative neurology.

[17]  J. Kaas,et al.  The identification of relay neurons in the dorsal lateral geniculate nucleus of monkeys using horseradish peroxidase , 1978, The Journal of comparative neurology.

[18]  W. Singer,et al.  Excitatory synaptic ensemble properties in the visual cortex of the macaque monkey: A current source density analysis of electrically evoked potentials , 1979, The Journal of comparative neurology.

[19]  A. Peters,et al.  The projection of the lateral geniculate nucleus to area 17 of the rat cerebral cortex. V. Degenerating axon terminals synapsing with Golgi impregnated neurons , 1979, Journal of neurocytology.

[20]  J Bullier,et al.  Ordinal position and afferent input of neurons in monkey striate cortex , 1980, The Journal of comparative neurology.

[21]  A. Hendrickson,et al.  Immunocytochemical localization of glutamic acid decarboxylase in monkey striate cortex , 1981, Nature.

[22]  D. Hubel,et al.  Regular patchy distribution of cytochrome oxidase staining in primary visual cortex of macaque monkey , 1981, Nature.

[23]  H. Wässle,et al.  The retinal projection to the thalamus in the cat: A quantitative investigation and a comparison with the retinotectal pathway , 1981, The Journal of comparative neurology.

[24]  K. Rockland,et al.  Cortical connections of the occipital lobe in the rhesus monkey: Interconnections between areas 17, 18, 19 and the superior temporal sulcus , 1981, Brain Research.

[25]  L. Garey,et al.  The thalamic projection to cat visual cortex: Ultrastructure of neurons identified by golgi impregnation or retrograde horseradish peroxidase transport , 1981, Neuroscience.

[26]  E. Switkes,et al.  Deoxyglucose analysis of retinotopic organization in primate striate cortex. , 1982, Science.

[27]  M. Colonnier,et al.  A laminar analysis of the number of neurons, glia, and synapses in the visual cortex (area 17) of adult macaque monkeys , 1982, The Journal of comparative neurology.

[28]  D. Hubel,et al.  Thalamic inputs to cytochrome oxidase-rich regions in monkey visual cortex. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[29]  T. P. S. Powell,et al.  Laminar cell counts and geniculo-cortical boutons in area 17 of cat and monkey , 1983, Brain Research.

[30]  J. Lund,et al.  Neuronal composition and development in lamina 4C of monkey striate cortex , 1983, The Journal of comparative neurology.

[31]  D. Fitzpatrick,et al.  The laminar organization of the lateral geniculate body and the striate cortex in the squirrel monkey (Saimiri sciureus) , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[32]  R. Doty,et al.  Nongeniculate afferents to striate cortex in macaques , 1983, The Journal of comparative neurology.

[33]  G. Blasdel,et al.  Termination of afferent axons in macaque striate cortex , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[34]  G. Blasdel,et al.  Physiological organization of layer 4 in macaque striate cortex , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[35]  John H. R. Maunsell,et al.  The visual field representation in striate cortex of the macaque monkey: Asymmetries, anisotropies, and individual variability , 1984, Vision Research.

[36]  J. Horton,et al.  Cytochrome oxidase patches: a new cytoarchitectonic feature of monkey visual cortex. , 1984, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[37]  D. Hubel,et al.  Anatomy and physiology of a color system in the primate visual cortex , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[38]  D. V. van Essen,et al.  The representation of the visual field in parvicellular and magnocellular layers of the lateral geniculate nucleus in the macaque monkey , 1984, The Journal of comparative neurology.

[39]  G. Blasdel,et al.  Intrinsic connections of macaque striate cortex: afferent and efferent connections of lamina 4C , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[40]  S. Levay,et al.  The complete pattern of ocular dominance stripes in the striate cortex and visual field of the macaque monkey , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[41]  R. W. Rodieck,et al.  Central projections of cat retinal ganglion cells , 1985, The Journal of comparative neurology.

[42]  R. Vautin,et al.  Color cell groups in foveal striate cortex of the behaving macaque. , 1985, Journal of neurophysiology.

[43]  A. Peters,et al.  The morphology and synaptic connections of spiny stellate neurons in monkey visual cortex (area 17): A golgi‐electron microscopic study , 1985, The Journal of comparative neurology.

[44]  G. Dunkelberger,et al.  The number and diameter distribution of axons in the monkey optic nerve. , 1986, Investigative ophthalmology & visual science.

[45]  R. Williams,et al.  Growth cones, dying axons, and developmental fluctuations in the fiber population of the cat's optic nerve , 1986, The Journal of comparative neurology.

[46]  J. Lund Local circuit neurons of macaque monkey striate cortex: I. Neurons of laminae 4C and 5A , 1987, The Journal of comparative neurology.

[47]  T. L. Davis,et al.  Pattern of lateral geniculate synapses on neuron somata in layer IV of the cat striate cortex , 1987, The Journal of comparative neurology.

[48]  S. Schein,et al.  Mapping of retinal and geniculate neurons onto striate cortex of macaque , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[49]  A. Parent,et al.  Distribution of gaba-immunoreactive neurons in the thalamus of the squirrel monkey (Saimiri sciureus) , 1987, Neuroscience.

[50]  A. Peters Number of Neurons and Synapses in Primary Visual Cortex , 1987 .

[51]  D. Hubel,et al.  Do the relative mapping densities of the magno- and parvocellular systems vary with eccentricity? , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[52]  E. Switkes,et al.  Functional anatomy of macaque striate cortex. I. Ocular dominance, binocular interactions, and baseline conditions , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[53]  E. Switkes,et al.  Functional anatomy of macaque striate cortex. III. Color , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[54]  E. Switkes,et al.  Functional anatomy of macaque striate cortex. II. Retinotopic organization , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[55]  Kevan A. C. Martin,et al.  A Canonical Microcircuit for Neocortex , 1989, Neural Computation.

[56]  D. Whitteridge,et al.  Arborisation pattern and postsynaptic targets of physiologically identified thalamocortical afferents in striate cortex of the macaque monkey , 1989, The Journal of comparative neurology.

[57]  E. White Cortical Circuits: Synaptic Organization of the Cerebral Cortex , 1989 .

[58]  Jr. Wilson Synaptic organization of individual neurons in the macaque lateral geniculate nucleus , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[59]  A. Cowey,et al.  Interlaminar and lateral excitatory amino acid connections in the striate cortex of monkey , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[60]  Nikos K Logothetis,et al.  The color-opponent and broad-band channels of the primate visual system , 1990, Trends in Neurosciences.

[61]  G. Dunkelberger,et al.  Aging changes of the rhesus monkey optic nerve. , 1990, Investigative ophthalmology & visual science.

[62]  P. Lennie,et al.  Chromatic mechanisms in striate cortex of macaque , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[63]  R. Douglas,et al.  Opening the grey box , 1991, Trends in Neurosciences.

[64]  A. Peters,et al.  Organization of pyramidal neurons in area 17 of monkey visual cortex , 1991, The Journal of comparative neurology.

[65]  A. Peters,et al.  Layer IVA of rhesus monkey primary visual cortex. , 1991, Cerebral cortex.

[66]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[67]  M. Cynader,et al.  Quantitative distribution of GABA-immunopositive and -immunonegative neurons and synapses in the monkey striate cortex (area 17). , 1992, Cerebral cortex.

[68]  G. Blasdel,et al.  Differential imaging of ocular dominance and orientation selectivity in monkey striate cortex , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[69]  G. Blasdel,et al.  Orientation selectivity, preference, and continuity in monkey striate cortex , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[70]  V. Casagrande,et al.  Direct W‐like geniculate projections to the cytochrome oxidase (CO) blobs in primate visual cortex: Axon morphology , 1992, The Journal of comparative neurology.

[71]  John H. R. Maunsell,et al.  How parallel are the primate visual pathways? , 1993, Annual review of neuroscience.

[72]  P. D. Spear,et al.  Effects of aging on the size, density, and number of rhesus monkey lateral geniculate neurons , 1993, The Journal of comparative neurology.

[73]  B R Payne,et al.  Evidence for visual cortical area homologs in cat and macaque monkey. , 1993, Cerebral cortex.

[74]  R. Williams,et al.  Rapid evolution of the visual system: a cellular assay of the retina and dorsal lateral geniculate nucleus of the Spanish wildcat and the domestic cat , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[75]  A. Peters,et al.  Numerical relationships between geniculocortical afferents and pyramidal cell modules in cat primary visual cortex. , 1993, Cerebral cortex.